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We overview several recent experimental and numerical observations, which are at odds with the
vortex glass theory of the freezing of disordered vortex matter. To reinvestigate the issue, we performed
numerical simulations of the overdamped London-Langevin model, and use finite size scaling to analyze
the data. Upon approaching the transition the initial vortex-glass-type criticality is arrested at some
crossover temperature. Below this temperature the time scales continue growing very quickly, consistent
with the Vogel-Fulcher form, while the spatial correlation length j stops exhibiting any observable
divergence. We call this mode of freezing the vortex molasses scenario.

PACS numbers: 74.60.Ge, 74.25.Dw
The influence of disorder on vortex matter is one of the
most paradigmatic problems. The vortex lattice, formed
in clean systems, is inherently unstable towards a less
ordered state even for infinitesimally small disorder [1].
At small magnetic fields, or equivalently, at weak disor-
der, a dislocation free phase emerges, which thus retains a
topological order. Small angle neutron scattering [2], and
Bitter decoration experiments [3] seem to support this pic-
ture. The theoretical foundation for such a Bragg glass
was provided by scaling arguments [4], and variational
calculations [5]. Its cornerstone is the logarithmic behav-
ior of vortex correlations at large distances. Numerical
simulations also reported a strongly suppressed disloca-
tion density [6], and confirmed the logarithmic behavior of
correlations [7] below a critical field strength. It is note-
worthy, however, that the largest scale imaging studies [8]
did not find evidence for logarithmic correlations; thus the
details of the dislocation free regime are still subject to
discussion.

We also understand the influence of increasing fields,
or disorder. The key phenomenon here is the appearance
of dislocation loops, accompanied by the entanglement
of vortices [9,10]. Experimental support for this idea is
the sharp enhancement of the critical current from mag-
netization measurements [11–14], the rapid destruction of
the Bragg peaks in neutron scattering [2], and the pro-
nounced dips in the electric field–current density, or E-J
curves [15]. Numerical studies found evidence for dislo-
cation loops destroying a quasiordered state in frustrated
XY models [16], in Lawrence-Doniach representations [6],
and in realistic London-Langevin approaches [7].

The nature of the high field phase is still very much
in debate. The thermally assisted flux flow (TAFF) pic-
ture predicts that vortices move in bundles, and overcome
barriers via thermal excitations. This destroys supercon-
ductivity because the linear resistivity assumes a finite
value, governed by an activated temperature dependence
R�T � � R0exp�2U�T � [17]. An influential alternative
was put forward in the form of the vortex glass (VG) theory
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[18,19]. The proposed vortex glass phase is distinguished
by an unbounded distribution of barrier heights. This re-
sults in the vanishing of the linear resistivity, thus restoring
superconductivity, and inherently nonlinear E-J character-
istics. Numerical support for this picture emerged from
the study of the isotropic gauge glass model, ignoring the
effects of screening [20]. Experimental confirmation soon
followed, on heavily twinned YBCO films [21]. A key evi-
dence was provided by observing the scaling of a crossover
current Jx [22].

Recent experimental and numerical work, however, has
raised new questions about the vortex glass picture.

(i) The values of the correlation length, creep, and dy-
namical exponents, n, m, and z, respectively, seem to de-
pend on temperature, current, and sample quality [23] in
a very nonuniversal way. n was found between 1.3–2, z
between 3.1–6.5, and m between 0.2–0.5.

(ii) The above values of n and z are much higher than
their mean field values, indicating that the lower critical
dimension might be close to 3. It is already accepted that
there is no finite temperature VG phase in 2D [20].

(iii) Recent experiments in completely untwinned
YBCO samples found that the E-J curves remained
completely linear down to the lowest measurable values
of the current. Correspondingly, no scaling behavior of
the E-J curves was found [24,25]. This suggests that in
previous works the twin boundaries might have played the
role of extended defects, and in fact the observed scaling
behavior was that of the Bose glass.

(iv) When the twin boundaries were removed in YBCO
samples, the crucial crossover current Jx was found to
saturate, instead of exhibiting a scaling behavior [26].

(v) Recent numerical papers reported that, when a finite
London screening length l was restored into the previously
studied gauge glass models, the finite temperature vortex
glass transition disappeared [27–29]. Now, close to the
transition the vortex correlation length is supposed to di-
verge, thus exceeding l. Therefore the ultimate transition
region is always in this finite l regime.
© 2000 The American Physical Society
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We conclude that there is an emerging body of evi-
dence, which is inconsistent with the vortex glass picture.
Motivated by this inconsistency, in this paper we explore
analogies to another widely studied glass transition, and
investigate the possibility that vortices freeze like the win-
dow glass: the vortex molasses scenario.

We realize that there is not a uniquely accepted theory
of the window glass transition. Therefore we construct the
vortex molasses (VM) scenario only from those elements,
which are common among the different theories: (i) a very
rapid freezing of the dynamics, with diverging time scales,
characterized by the Vogel-Fulcher law: t � exp�1��T 2

TG��; (ii) the possible divergence of the spatial corre-
lation length j is rendered unobservable by this rapid
freezing.

We note that, among the early alternative propositions,
some emphasize the entanglement of vortices in the pres-
ence of disorder, in analogy to polymer glasses [30]. Also,
extensions of the TAFF theory were constructed [31]. Fi-
nally, a vortex slush picture has been proposed, viewing
the glass of vortices as a viscous liquid, driven by the rem-
nants of the first order melting transition [32].

We start by overviewing ways to distinguish between the
VG and VM scenarios. First, the predicted temperature de-
pendence of the resistivity differs: in the VG theory the re-
sistivity vanishes as r�T � � rVGjT 2 TGj

n�z21�, whereas
in the VM scenario one expects the resistivity to follow the
Vogel-Fulcher law r�T � � rVM exp�21��T 2 TG�� [33].
However, it is hard to achieve decisive distinction between
these forms, as the resistivity exponent in the VG theory
is large: n�z 2 1� � 5 7 [22].

The second method is more promising. Equating the
current related free energy of a correlated volume to the
thermal energy yields the above-mentioned crossover cur-
rent density scale Jx � ckBT��F0j2� [19]. Above the
transition temperature the low current linear E-J of the vis-
cous liquid is expected to cross over at Jx to the Bardeen-
Stephen form at high currents. In the VG theory the
correlation length j diverges: j � �T 2 TG�2n . Cor-
respondingly, the crossover current scale Jx collapses as
Jx�T � � �T 2 TG�2n . In contrast, in the VM picture the
criticality of the correlation length is unobservable, thus
Jx does not collapse. As mentioned, while in twinned
samples Jx collapsed, in untwinned YBCO Jx saturated
at some finite value upon approaching the transition [26].

In this paper we report numerical simulations of a realis-
tic, London-type model for driven vortices, governed by
overdamped dynamics in order to distinguish between the
above two scenarios. Previous studies on the gauge glass
already indicated a breakdown of the VG picture [27–29];
however, that model is rather simplified. For instance, it is
isotropic, whereas in real vortex matter the external field
definitely introduces a strong anisotropy. Thus it remains
an open question, whether the gauge glass adequately de-
scribes the vortex matter, making our realistic simulations
necessary. The Langevin equation describing the over-
damped motion of vortices reads
h
≠Rm�z, t�

≠t
� zm�z, t� 1 FL 2

dH��Rn�z, t���
dRm�z, t�

, (1)

where m labels the vortices with coordinates Rm, z �z, t�
is the Langevin noise, and FL is the Lorentz force. The
Hamiltonian H is constructed on the basis of the London
theory. Its derivative decomposes into three forces: the
pairwise interactions, the single-vortex bending force, and
the pinning. For more details of the method, see Ref. [7].
The trustworthiness of our code was demonstrated by the
quantitatively correct reproduction of the phase diagram
of disordered YBCO [7]. In our model we do not take
into account vortex loops whose effect on melting is still
controversial [34].

There are several length scales in the model. To avoid
observing some crossover instead of the asymptotic
behavior, we chose the characteristic microscopic length
scales small and close to each other. We use l�j � 4, a
large magnetic field of H�Hc2 � 0.2, to make a0 	 l,
and finally we made the system isotropic by choosing
e � 1. The 100–500 vortex elements produce good self-
averaging, so a reasonable statistics was achieved by
averaging over 10–20 disorder realizations. Simu-
lated annealing was employed to generate the starting
configurations.

In Fig. 1 we show the typical behavior of the differen-
tial resistivity r�T , I� � dE�dJ, normalized to rBS, the
Bardeen-Stephen value. At high currents r�T , J� � rBS
as it should. After a pronounced drop with decreasing cur-
rent, r�T , J� flattens at low J, clearly indicating an Ohmic
behavior: we are in the vortex liquid regime.

In our temperature sweeps r�T � drops by 2 orders of
magnitude upon approaching the freezing transition. The
inset of Fig. 1 shows its temperature dependence. We also

FIG. 1. The current dependence of the resistivity r�T , I��rBS
at T�Tc � 0.74. Inset: The temperature dependence of the low-
current Ohmic resistance r�T , I ! 0��rBS, for L � 83 systems.
Dark gray: fit to the Vogel-Fulcher form, r�T � � r0exp�2T0�
�T 2 TG��; light grey: VG fit, r�T� � r0��T 2 TG��TG�2n .
1995
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exhibit a Vogel-Fulcher fit, and a power law fit. As ex-
pected, both fits are comparable, and thus do not distin-
guish between the VM and VG theories.

However, useful information can be extracted from the
R�T � runs via finite size scaling. In Fig. 2 we show the re-
sults for 43, 63, and 83 systems. Upon cooling, the system
exhibits increasing finite size sensitivity down to T�Tc �
0.70, which typically indicates the approaching of a phase
transition. Remarkably, however, below this temperature
range the finite size sensitivity decreases, as if the critical-
ity is arrested.

To view this from a different perspective, we follow
Young et al. [27] by studying an analog of the Binder
ratio, log�r�L��r�L0��� log�L�L0�. Far from a transition,
where finite size sensitivity is small, this should be close
to 0. Approaching a transition, the increased finite size
sensitivity is signalled by the data on different system sizes
splaying out. Eventually, however, they come together and
cross at T � TG . In Fig. 3 we show this ratio for our
model. As the temperature decreases, the initial splaying
shows an impending transition. The curves, however, do
not cross. Instead, they turn back up: the transition is
arrested. This again signals the decrease of finite size
sensitivity, which is most readily interpreted as the initial
increase of the correlation length j being arrested around
T�Tc � 0.70.

The best measure of j is via the crossover current Jx ,
plotted in Fig. 4. As j � J

21�2
x , decreasing Jx indicates

increasing correlation length. However, Jx , and thus j, sat-
urates with decreasing T , around T�Tc � 0.68, in quanti-
tative accord with the finite size scaling. Note that a very
similar flattening of Jx was observed in untwinned YBCO
[26]. All these three tests can be interpreted as follows.
Upon decreasing the temperature a vortex glass criticality
starts to develop. However, this critical behavior gets ar-
rested around T�Tc � 0.69 6 0.01, and crosses over to
a vortex molasses criticality. This is characterized by a

FIG. 2. The temperature dependence of R�T� for systems with
L � 4, 6, and 8.
1996
rapid, Vogel-Fulcher-type decrease of the resistivity, but
at the same time an essentially noncritical behavior of the
correlation length j.

The above results established that the freezing transition
is unlikely to be governed by vortex glass theory, but rather
it looks more like a window glass transition. However,
there is not a single theory agreed upon by the window
glass community. For a review of different approaches,
see Ref. [33]. Some theories propose that the correlation
length diverges as a power law, but the freezing of the
dynamics is so rapid that it renders this divergence unob-
servable. Others believe that, in fact, j does not diverge at
all; it remains noncritical even on the longest time scales.
Finally, there are theories which envision that there is no
true transition at any finite temperatures, but a rapid, con-
tinuous increase of the viscosity, diverging only at T � 0.
This latter view was imported to the vortex problem by
Ref. [27]. Setting up the scaling theory for finite size sys-
tems with a correlation length j � T2n gives for the non-
linear E-J relation: E��JR� � Ẽ�J�T112n , L1�nT �, where
E is a universal scaling function. Adopting the accepted
definition of the crossover current density, E��JxR� � 2
yields Jx � T112nf�L1�nT �, where f is another universal
function. Reference [27] finds Jx to be a universal function
of L1�nT , with n � 1. To test this proposition, we also
plotted Jx�T112n as a function of L1�nT . However, we
found no universal dependence whatsoever. This clearly
eliminates the possibility of a T � 0 fixed point governing
the freezing behavior of the London model. Thus, remark-
ably, regarding the freezing transition the gauge glass and
the realistic vortex simulations give qualitatively different
results.

We now understand that structural (window) glasses and
systems with quenched disorder often behave quite simi-
larly [35]. Their glassy phase exhibits different aging phe-
nomena [36]. Measuring the two time correlation functions
[36] of vortices, and comparing to the predicted power law
relaxation forms, would be a constructive test of the vortex
molasses.

A word on the appropriateness of models with strong
screening. Reference [27] recalls that in the analogous

FIG. 3. The logarithmic resistance ratio as a function of the
temperature.
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FIG. 4. The temperature dependence of the crossover current
Ix , for L � 4, 6, and 8.

3D XY model both the screening length l and correlation
length j diverge, when Tc is approached from below. In
the critical region the exponent of l is half of j’s, and,
hence, close enough to Tc the proper characterization of
the system should involve strong screening. Above Tc

the screening length on macroscopic scales is infinite, as
we are in the vortex liquid. On the scale of intervortex
separation, however, l equals its bare value. In general,
the presence of the other vortices generates a renormalized,
scale dependent l�x�. Whether the model is in the strong
or weak screening limit will then be determined by l�j�
being greater or smaller than j. By invoking that the
critical behavior around Tc is typically symmetric, and
that below Tc we are in the strong screening limit, we
expect l�j� , j, i.e., the screening remaining essential
for understanding the physics of the model, the starting
point of our simulations.

In conclusion, we collected several numerical and ex-
perimental results, which are at odds with the vortex glass
theory of the freezing of the disordered vortex matter.
Previous confirmations of the VG theory were reinter-
preted in terms of twin boundaries and proper accounts
of the screening. To reinvestigate the issue, we performed
careful numerical simulations of the overdamped London-
Langevin model, and used finite size scaling to analyze
the data. We found that upon approaching the transi-
tion the initial vortex-glass-type criticality is arrested at
some crossover temperature, where the vortex correlation
length catches up with the screening length. Below this
temperature the time scale continues growing very quickly,
consistent with the Vogel-Fulcher form, while the spatial
correlation length j stops exhibiting any observable diver-
gence. We call this mode of freezing the vortex molasses
scenario.
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