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We demonstrate a method of calculating the spectral function of a composite from measured reflectivity
data. To solve this inverse problem it is necessary for the reflectivity data to be taken through a strong,
high Q, resonance. By analyzing the reststrahlen region of different fill fraction KCl-diamond composites
at three different temperatures, we find accurate spectral functions that are independent of temperature
with the low temperature data giving the best resolution. These spectral functions are then used to
successfully predict the optical response of RbCl-diamond composites.

PACS numbers: 72.80.Tm, 78.20.Bh, 78.30.Ly
The effective dielectric properties of a composite de-
pend on both the dielectric properties of the constituent
materials and on the geometry of the composite. In the
Bergman-Milton [1,2] spectral formalism these two ef-
fects can be separated and the effective properties are
given by an integral transform of a function, known as
the spectral function, that depends only on the geometry
of the composite [3,4]. The same spectral function will
also determine the effective magnetic permeability, ther-
mal conductivity, or any other property of the composite
governed by Laplace’s equation. In this Letter we show
that an inverse method can be used to extract the spec-
tral function from the measured reflectivity of a compos-
ite which contains at least one strong, high Q, resonance.
Our results provide an important link between the spectral
representation, one of the central ideas in two component
composite theory, and the experimental study of composite
materials. Interesting future applications should include
ferroelectric/ferrimagnetic composites [5] and interstellar
dust analogs [6,7].

We experimentally construct composites using a distri-
bution of submicron sized diamond and KCl particles and
measure the sample reflectance in the 40 to 200 micron
wavelength region. For low temperatures these measure-
ments provide data close enough to the branch cut in the
complex plane to allow the spectral function to be accu-
rately determined. Because the dielectric function of KCl
varies rapidly with temperature, we use temperature de-
pendent studies to demonstrate that the spectral function is
indeed dependent only on the geometry of the composite.
Finally, we demonstrate that the spectral function extracted
from KCl-diamond data can successfully predict the ex-
perimental reflectance of RbCl-diamond composites.

For a two component material, with component dielec-
tric constants ´A and ´B, respectively, the effective dielec-
tric constant is given by
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, (1)
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where s � �1 2 ´B�´A�21 and hA�x� is the spectral func-
tion which contains all the geometric information neces-
sary to determine the effective dielectric constant ´eff. The
subscript A indicates that we are treating A as the host ma-
terial and B as the inclusion.

Inverse problems like solving Eq. (1) to extract hA�x�
from measured values of ´eff�s� are often unstable and
there is always some loss of information because of the
broadening effect of the integral transform [8]. The nu-
merical instability is overcome by regularization and loss
of information is minimized if data are taken close to the
cut where the kernel 1��s 2 x� is sharpest. Regularization
is often based on a priori assumptions about the solution,
but in this case we can use known properties [1–3,9–11]
of the spectral function: It is positive or zero and restricted
to the real interval x [ �0, 1�. The zeroth moment is
equal to the volume fraction of the inclusion phase soZ 1

0
hA�x� dx � pB , (2)

and for any isotropic continuum material in three dimen-
sions the first moment satisfiesZ 1

0
xhA�x� dx �

1
3

pBpA . (3)

When the B phase percolates the spectral function has a
delta function at x � 0 with weight that increases from
zero at the percolation threshold to one when pB � 1. It
may also have another integrable singularity at the origin
so we define a reduced spectral function g�x� � xhA�x�
such that

hA�x� � sBd�x� 1
g�x�

x
. (4)

One may also choose B as the host material and A as the
inclusion, in which case the spectral function becomes

hB�x� � sAd�x� 1
g�1 2 x�

x
, (5)

where sA is nonzero when the A phase percolates andR1
0 hB�x� dx � pA. We choose to treat the volume fractions
© 2000 The American Physical Society



VOLUME 84, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 28 FEBRUARY 2000
pA and pB as unknown variables that satisfy pA 1 pB �
1 and impose a self-consistency constraint between the
zeroth and first moments,

R1
0 g�x� dx � 1

3 �
R1

0 hA�x� dx� 3

�
R1

0 hB�x� dx�. These constraints, together with sA, sB $

0 and g�x� $ 0 and restricted to the interval x [ �0, 1�
are sufficient to regularize the inverse problem.

It is possible to obtain values of s that are close to the cut
if the real part of ´B�´A is negative and the imaginary part
is small, which is the case if one component has a sharp
dielectric resonance while the other is essentially inert in
this specific frequency region. The real part of s�v� will
pass from 0 to 1 for frequencies v between the transverse
optical frequency, vTO, and the longitudinal optical fre-
quency, vLO. This motivated our choice of a diamond-KCl
composite because diamond is optically inactive in the
far infrared where KCl has a strong resonance line. The
method is not restricted to optically active/inert compos-
ites. For composites in which both components contain
resonances, s�v� will still pass close to the cut in the
frequency interval spanning a strong high Q resonance.
An early attempt to extract the spectral function from ex-
periment had limited success because data were not taken
through a resonance [12]. More recent efforts [6,13–15]
realized the importance of using data through a resonance
line and obtained better results but were hampered by not
having low temperature reflectivity data available.

Pure KCl was freezer milled to reduce the particle size
and a powder mixture with the desired volume fraction of
diamond powder was prepared by weighing. The mixture
was then freezer milled again both to mix and to reduce the
particle size further. Composite samples were prepared by
pressing the material in an evacuated die cell to a pres-
sure of 0.75 GPa. The samples were made approximately
7 mm thick with the back surface rounded to ensure that
only reflections from the front surface were measured. The
reflectivity of the sample and reference gold mirror could
be examined sequentially in a variable temperature opti-
cal access cryostat. Polypropylene windows were used on
the cryostat both because of its low reflectivity and also
because of the negligible absorption in the reststrahlen re-
gion. Far-infrared (FIR) reflectivity measurements were
made at three sample temperatures (5, 98, and 274 K) us-
ing a Bomem FTIR spectrometer with a 4.2 K Si bolometer
detector.

A measured spectrum can be significantly altered by ra-
diation entering the spectrometer from the sample cham-
ber, two large sources being emission from the sample and
background radiation reflecting from optical components
in the sample chamber, such as cryostat windows. This
problem was overcome by measuring both the sample and
reference mirror with two FIR sources the intensity of one
source much greater than the other, an Hg arc lamp, and
a room temperature blackbody source, and then basically
subtracting the spectrum with the weak source from that
with the strong source.

We studied four samples that nominally had volume
fractions of 0%, 5%, 20%, and 35% of diamond. On
further analysis it was found that all samples contained a
small fraction of voids but for convenience we will refer to
them as the pure, 5%, 20%, and 35% samples. The pure,
5%, and 20% samples all had the same KCl to void ra-
tio of 97.2:2.8; the 35% sample was 59.3% KCl, 31.9%
diamond, and 8.8% voids. The spectral representation
[Eq. (1)] for the effective dielectric function is exact only
for a two phase composite so we make the approximation
of treating the samples as diamond (the B phase) in an ef-
fective matrix of 97.2% KCl, 2.8% voids (the A phase).
The dielectric function of the A phase is determined from
a multiple oscillator fit to reflectance data of the pure
pressed pellet sample which has a broad reststrahlen band
associated with the optical mode phonon of the KCl, and
a smaller two-phonon peak at higher frequencies. Over
this frequency range the dielectric function of diamond is
treated as a constant, ´B � 5.5. Between vTO and vLO of
KCl the real part of the ratio ´A�´B is negative and thus the
complex variable s�v�, plotted in Fig. 1, passes near the
cut, which is shown as a bold solid line. The low tempera-
ture resonance lines are sharper than the room temperature
lines so the low temperature track is closer to the cut than
the room temperature track.

The inverse problem is set up in the following way.
Given a set of measurements of the reflectance of the com-
posite, Ri , at frequencies vi and using the dielectric func-
tions of the two components at these frequencies, ´A�vi�
and ´B�vi�, we do a nonlinear least squares fit adjusting
the spectral function [expressed in terms of sA, sB, and
g�x�] to minimize the function

x2 � x2
R 1 x2

constraint , (6)

where

x2
R �

X
i

�Ri 2 R�´A�vi�, ´B�vi�, sA, sB, g�x���2.

(7)
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FIG. 1. The complex quantity s�v� shown at 5 K (solid curve),
and 274 K (dashed curve). The arrows indicate the approximate
frequencies of two points on the track, vTO �150 cm21� and
vLO �212 cm21� and the bold straight line marks the cut. The
loops are associated with two-phonon peaks.
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FIG. 2. The reflectance data of the 20% diamond sample at
two different temperatures. The solid curves are the experimen-
tal data, the dashed curves are the best fit to the data, and the
dotted curves are the effective medium theory.

Here

R�´A�vi�, ´B�vi�, sA, sB, g�x�� �

É p
´eff 2 1

p
´eff 1 1

É2
(8)

and ´eff is given by Eq. (1). The minimization routine
is written to constrain g�x� to be non-negative and only
nonzero in the interval �0, 1� and x

2
constraint imposes the

constraints on the moments of the spectral function [10].
The reduced spectral function is represented by a his-
togram of 130 bins. Most of the previous attempts at this
inverse problem [6,12,14,15] were based on model spec-
tral functions with a few adjustable parameters. These can
display only a limited amount of structure which is suffi-
cient for fitting data that are far from the cut but inade-
quate for low temperature data where s�v� is very close to
the real axis, as shown in Fig. 1. Our algorithm has been
tested extensively on simulated reflectance data of model
systems [10,11].

Figure 2 is a plot of the measured reflectance of the 20%
sample at two temperatures. In the same figure we show
the best fit to the reflectance obtained from the inverse
method and, as a comparison, the reflectance given by a
Bruggeman effective medium approximation (EMA) based
on spherical inclusions. Figure 3 is a plot of the reduced
spectral function extracted from the reflectance data shown
in Fig. 2. At each temperature the result shown is an aver-
age from many different initial conditions that converge to
approximately the same final x

2
R . These two figures clearly

show that although the reflectance changes considerably
with temperature the spectral functions obtained from the
two data sets are very similar, demonstrating that the spec-
tral function depends only on the geometry of the compos-
ite. The error bars on the high temperature curve are much
greater than the error bars on the low temperature curve,
indicating the importance of having low temperature data
1980
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FIG. 3. The reduced spectral function g�x� for the 20%
diamond sample, obtained from the reflectance data at three
different temperatures. Representative error bars of 1 standard
deviation are shown for the room and the low temperature data.

to get the maximum detail in the spectral function. The er-
ror bars are largest near x � 0 and x � 1 where the s�v�
curve loops away from the cut and where the fitting pro-
cedure has trouble separating the delta functions from the
reduced spectral function. The fit to the reflectance data
(Fig. 2) is generally good but there are deviations, which
may be associated with strain broadening of the KCl reso-
nance line.

Figure 4 is a plot of the reduced spectral function g�x�
obtained from the low temperature data for the three differ-
ent samples with the curves scaled so each has unit weight.
The weights of the delta functions, sA and sB, are also
obtained from the fitting procedure. We find that sA de-
creases from 0.86 to 0.58 to 0.32, and sB increases from
0.0 to 0.01 to 0.13, as the volume fraction of diamond
increases [16]. In Fig. 4 note how the spectral function
broadens as the volume fraction of the inclusion phase in-
creases and that all three curves have a gap near x � 1
because they are well above the percolation threshold of
the A phase, as is indicated by the nonzero values of sA.
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FIG. 4. The reduced spectral functions g�x�, scaled by
pApB�3, as obtained from the low temperature data for the
three different diamond concentrations. Representative error
bars of 1 standard deviation are shown.
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FIG. 5. The measured reflectance data (solid curves) for the
20% diamond in RbCl sample at two different temperatures,
and the predicted reflectance (dotted curves) calculated from
the spectral function of the 20% diamond in KCl sample, the
dielectric function of diamond, and the dielectric function ob-
tained from the pure RbCl pressed pellet.

For the 20% sample the small value of sB and the fact that
g�x� extends all the way to x � 0 suggests that the dia-
mond phase is just above the percolation threshold but this
result is within the noise. The 5% sample has a small gap
at x � 0 because it is well below the percolation threshold
of the diamond phase; the 35% sample also has a small gap
at x � 0 because it is well above the percolation threshold.

The fitting procedure gives the volume fraction of the
A phase for the three samples as pA � 0.92, 0.75, and
0.59. The measured volume fractions of KCl plus voids
are 0.951, 0.806, and 0.681, respectively. We attribute
the differences to the approximation of treating the KCl
and voids as a single phase and the imperfect fit to the
reflectance data. Our approach works well for the 5% and
20% samples but not so well for the 35% sample which
has a much larger volume fraction of voids.

Although the spectral function does not determine the
geometry uniquely, we have tested how well our result can
be used to describe composite systems with statistically
similar microstructures, which should have the same spec-
tral function. Using the spectral function obtained from
the KCl-diamond samples and a dielectric function deter-
mined by a multiple oscillator fit to a pressed pellet of pure
RbCl (that contained 2% voids) we calculate the reflectiv-
ity of RbCl-diamond composite samples containing 5%,
20%, and 35% diamond and compare our findings to the
reflectivity results measured for these three fill fractions.
In Fig. 5 we show the predicted and measured reflectance
for the 20% sample at two temperatures. The predicted
curve agrees with the measurement to the same accuracy
as the original fit to the KCl-diamond reflectance data for
the 20% sample, shown in Fig. 2.

In summary, we have shown how the spectral function
can be extracted from experimental reflectivity data by
using an inverse method and that the most accurate de-
termination of the spectral function comes from the low
temperature data. The successful application of the spec-
tral function determined for one composite to predict the
optical properties of a chemically different but structurally
similar second composite has been demonstrated. Our re-
sults suggest that reflectivity data in the reststrahlen region
of the more complex ferroelectric/ferrimagnetic compos-
ites [5] could be used to accurately predict the effective
permeability and permittivity in a completely different
frequency regime, a class of problems of some practical
importance.
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