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We show that the sensitivity of wave speckle patterns in disordered nonlinear media to changes of
scattering potential increases with sample size. For large sizes the sensitivity diverges, which implies that
for a given coherent wave incident on a sample there are multiple solutions for the spatial distribution
of the wave density. The number of solutions increases exponentially with the sample size.

PACS numbers: 72.10.Fk, 72.20.Ht
If a coherent wave described by a field f�r� propagates
in an elastically scattering medium, the spatial dependence
of its “density” n�r� � jf�r�j2 exhibits speckle: n�r� is
a random, sample specific function of coordinate r. In
the cases of noninteracting electrons and electromagnetic
waves propagating in linear media the theory of sensitivity
of speckle patterns to a change in scattering potential was
developed long ago [1–5]. It was shown that the sensitivity
is very large, but finite.

In this Letter we consider the same question in the case
where a wave propagates in nonlinear media. For the sake
of concreteness we consider the situation where the propa-
gation of the wave is described by a nonlinear Schrödinger
equationµ

2
1

2m
≠2

≠r2 2 e 1 u�r� 1 bn�r�
∂
f�r� � 0 . (1)

Here m is the wave mass, e is the wave’s energy, b is
a constant, and u�r� is a scattering potential which is a
random function of the coordinates. Similar equations ap-
pear in the theory of electromagnetic waves propagating
in nonlinear media [6], the theory of hydrodynamic tur-
bulence [7], and the theory of turbulent plasma [8]. We
will assume white noise statistics in u�r�: �u�r�� � 0,
�u�r�u�r1�� � �p�lm2�d�r 2 r1�. Here angular brackets
correspond to averaging over realizations of u�r� and l is
the elastic mean free path [l ¿ k21 � �2em�21�2].

Let us consider the case where a coherent wave f0�r� �
p

n0 exp�ik ? r� with momentum k is incident on a disor-
dered sample of the dimension L ¿ l (see the inset in
Fig. 1). We will show that the sensitivity of the nonlinear
speckle pattern n�r� to a small change in u�r� increases
with sample size L. At arbitrarily small n0 and for an arbi-
trary sign of b the sensitivity becomes infinite provided L
is large enough. This implies that Eq. (1) has many solu-
tions at a given coherent wave incident on a sample. This
is very different from the case of uniform nonlinear media,
where types of instabilities depend on the sign of b. (See,
for example, [6].)
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The r dependence of the average density �n�r�� can be
described by the diffusion equation, which is equivalent to
calculation of the diagrams shown in Fig. 2(a). We use the
usual diagram technique for averaging over realizations of
random potential [9]. If jbn0j ø

p
ek�lm one can ne-

glect the nonlinear corrections to the diffusion coefficient
D � lk�3m. We obtained this criterion by calculating the
transport scattering cross section on the effective potential
bn�r�. To do so we used calculated in [4,10] spatial corre-
lation functions of the density fluctuations on scale smaller
than mean free path [11]. In the case of the sample geome-
try shown in the inset of Fig. 1, we have �n�r�� � n0.

We can characterize the speckle pattern n�r� by cor-
relation functions �dn�r�dn�r1��, where dn�r� � n�r� 2

�n�r��. To calculate it at jr 2 r1j ¿ l one can use the
Langevin approach [4,11]

d
dr

dJ�r� � 0 ;

dJ�r� � 2D
d
dr

dn�r� 1 Jext�r, �u�� ;
(2)

FIG. 1. Graphical solution of Eq. (16). The wavy line cor-
responds to F1�u1�, while straight lines 1 and 3 correspond to
g21�2u1 in the cases g � 1 and g ¿ 1, respectively. Line 2
illustrates the case where a solution of Eq. (16) is unstable. The
inset shows the sample geometry.
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FIG. 2. Solid lines correspond to Green functions of Eq. (1) with b � 0, dashed lines correspond to �p�lm2�d�r 2 r1�, the four
solid lines’ vertices correspond to the factor b, thick wavy lines correspond to Du�r�, and thin wavy lines correspond to density
vertices.
�Ji
ext�r, �u��Jj

ext�r1, �u��� �
2pl
3m2 �n�r��2d�r 2 r1�dij .

(3)

Here J�r� �
1

2m Imf��r� �d�dr�f�r� is the current den-
sity, dJ�r� � J�r� 2 �J�r��, Jext�r, �u�� is a random ex-
ternal current source, and �Jext�r, �u��� � 0. As a result
we have

�dn�r�dn�r1�� �
6pn2

0

k2l
G�r, r0� �

n2
0

k2ljr 2 r1j
, (4)

where G�r, r1� is the Green function of the equation

2
d2

d2r
G�r, r1� � d�r 2 r1� (5)

with boundary conditions: G�r, r0� � 0 at open bound-
ary and n ?

≠

≠r G�r, r0� � n ?
d
≠r �n�r�� � 0 at the closed

sample’s boundaries.
A change of scattering potential Du�r� � u0�r� 2 u�r�

leads to a change of speckle pattern Dn�r� � n�r, �u0�� 2
n�r, �u��. Here n�r, �u0�� and n�r, �u�� are solutions
of Eq. (1) with scattering potentials u0�r� and u�r�,
respectively.

We can characterize the sensitivity of speckle pattern
to change in scattering potential by a correlation func-
tion K�r, r1� � ��Dn�r�Dn�r1���. Here double angular
brackets correspond to averaging over both realizations
of u�r� and realizations of Du�r�. We assume that
��Du�r�Du�r1��� � U2 exp�2jr 2 r1j�r0�, r0 ¿ l.

To obtain the value of K�r, r1� at jr 2 r1j ¿ l and in
quadratic in Du�r� approximation one can generalize the
Langevin approach

Jext�r, �u0�� � Jext�r, �u��

1
Z

dr0
dJext�r, �u��

du�r0�

3 	Du�r0� 1 bDn�r0�
 , (6)
ø
dJi

ext�r, �u��
du�r0�

dJ
j
ext�r1, �u��
du�r01�

¿
�
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lk2 dijd�r 2 r1� �G�r0, r01� �n�r�� 	�n�r01��G�r0, r� 1 �n�r0��G�r01, r�


2 	�n�r0�� �n�r01��G�r0, r�
G�r01, r�� ,
(7)ø

dJext�r, �u��
du�r0�

¿
�

ø
Ji

ext�r, �u��
dJ

j
ext�r0, �u��
du�r1�

¿
� 0 .
Equations (2)–(7) are a closed system which differs
from that in [4,10] by the term in Eq. (6) proportional to b.
The equations are equivalent to the summation of diagrams
shown in Figs. 2(b)–2(g). Diagrams, shown in Fig. 2(h),
are responsible for the small non-Gaussian part of the dis-
tribution function of dJext�r, �u���du�r0�. They are pro-
portional to a small parameter 1�k2lL ø 1 in the three
dimensional case (d � 3) and can be neglected. All dia-
grams responsible for localization effects can be neglected
1971
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as well. One can expand K�r, r1� �
P`

k�0 K �k��r, r1� in
powers of b2, where K �k� is a part of the correlation func-
tion proportional to b2k .

Let us first consider the linear case b � 0. Index
(0) will indicate quantities calculated at b � 0. Solving
Eqs. (2), (3), (6), and (7) in d � 3 case we get [4]

K �0��r, r1� � ��Dn�0��r�Dn�0��r1���

�
µ

tD

tf

∂2

�dn�r�dn�r1�� . (8)

Here the ratio between tD � L2�D and tf � L�r0U
characterizes the sensitivity of speckle to variation in scat-
tering potential. The case, when the ratio is tD�tf � 1,
corresponds to a complete change in the speckle pattern
due to the change of the scattering potential Du�r�. We
therefore define the sensitivity as �tf�tD�2K�r, r0�. Equa-
tion (8) can also be obtained by calculating the diagrams
shown in Figs. 2(b) and 2(c). One can get the same
estimate from the requirement that an additional phase
jx �0�j �

q
tD�tf , which the traveling wave acquires due

to the change in the potential Du�r�, is of order p .
Let us now turn to the case b fi 0. Expanding

Eqs. (2)–(6) in b, and performing the average over
realizations of u�r� and Du�r� in the d � 3 case we get,
for example,

K �1��r, r1� � gK �0��r, r1� , (9)

where

g �

µ
3
2

n0b

e

∂2µ
L
l

∂3

. (10)

Equation (9) can also be obtained by calculating the dia-
grams shown in Figs. 2(d)–2(g) or by estimating the ad-
ditional phase which the wave traveling along a typical
diffusion path will pick up due to the change in the effec-
tive potential bDn�0��r�

���Dx �1��2�� �

µ
kb

2e

∂2øøZ
ds ds1 Dn�0����r�s����

3 Dn�0����r�s1����
¿¿

� g���x �0��2�� . (11)

Here integration is taken along a typical diffusion path.
Equations (9) and (11) imply that at g ¿ 1 the perturba-

tion theory with respect to g diverges. Consequently, the
sensitivity �tf�tD�2K�r, r0� diverges at g � 1. We will
show that this is a consequence of the fact that at g . 1
Eq. (1) has many solutions. To describe these solutions we
have to use nonperturbative analysis.

It is convenient to expand

bn�r� �
D
p

L

X̀
m�1

m1�3umnm�r� (12)
1972
over a complete set of eigenstates nm�r� of diffusion equa-
tion

2D
d2

d2r
nm�r� � Emnm�r� , (13)

where Em � t
21
D m2�3 are eigenvalues of Eq. (13) and

m � 1, 2, . . . labels the eigenstates.
Let us first substitute Eq. (12) into Eq. (1) and regard

um as independent parameters. Then Eq. (1) becomes
a linear equation. Denoting the solution of Eq. (1) as
f�r, �bn�� we can write the self-consistency equation
n�r� � jf�r, �bn��j2 as

g21�2m2�3um � Fm�u1, . . . , uk , . . .� , (14)

which is equivalent to Eq. (1). Here Fm�u1, . . .� �
kL21n21

0 m1�3l1�2
R

dr jf�r, �bn��j2nm�r� are random
sample specific functions, whose forms depend on real-
izations of u�r�.

The problem of the investigation of properties of
Fm�u1, . . .� as a function of un is equivalent to the
linear problem considered in [1–5]. To characterize the
dimensionless functions Fm we calculate the following
correlation functions with the help of Eqs. (2)–(5) and
(7): (a) mesoscopic fluctuations of modes with m fi n are
uncorrelated �dFmdFn� � 0, where dFm � Fm 2 �Fm�;
(b) ��dFm�2� � 1; and (c)

�	Fm�u1, . . . , un 1 Dun, . . .� 2 Fm�u1, . . . , un, . . .�
2�
��dFm�2�

� �Dun�2. (15)

Equation (15) means that the characteristic period of ran-
dom oscillations of Fm as a function of un is of order unity,
Dun � 1. In anticipation of these results we have intro-
duced the factor m1�3 in Eq. (12).

Consider Eq. (14) with large enough m1 . M � g3�4.
Since the factor g21�2m

2�3
1 in the right-hand side of

Eq. (14) is much less than unity, this equation has a
unique solution at fixed uk with k fi m1. Therefore, to
estimate the number of solutions of the set of Eq. (14)
in the case g ¿ 1 we have to take into account only a
subset of Eq. (14) with m , M.

For example, at g � 1 modes with m � 1 are the most
important for determination of the number of solutions of
Eq. (14) and (1). This also follows, for example, from the
long range r 2 r1 dependence of K0�r, r1� and from the
fact that the main contribution to Eq. (9) and the diagrams
shown in Figs. 2(d)–2(g) is from integration over interme-
diate coordinates with jr 2 r0j � L.

Therefore we introduce a model which captures the main
features of the problem at g � 1: In Eq. (14) with m �
1 we put um.1 � �um.1� � g1�2m22�3�Fm� and get the
equation with one variable u1

g21�2u1 � F1�u1� . (16)

It is equivalent (up to a numerical factor) to substitution in
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Eq. (1) bn�r� ! �b�y�
R

n�r� dr, where y is the sample
volume. [Then expanding Eq. (1) with respect to pow-
ers of b one can reproduce the values of the diagrams
Figs. 2(b)–2(g) with the precision of the factor of order
of unity.] In Fig. 1 we show a qualitative “graphical” so-
lution of Eq. (16) which corresponds to the intersection of
two functions: F1�u1� and g21�2u1. It follows from Fig. 1
(see line 3) that at g . 1 both Eq. (16) and, consequently,
Eq. (1), have many solutions. In this case the sensitivity,
defined as �tf�tD�2K�r, r0�, diverges. The main contri-
bution to this divergency comes from realizations of u�r�,
when F1�u1� and g21�2u1 are tangent to each other (see
line 2 in Fig. 1) and a small perturbation of, for example,
the scattering potential u�r� leads to a disappearance of the
solution. The criterion g . 1 is equivalent to the inequal-
ity �	�b�L3� �d�de�

R
n�r� dr
2� . 1. In such a form this

criterion is similar to the criterion of Stoner ferromagnetic
instability in metals [12].

We mention that even at g , 1 there are rear real-
izations of u�r� which correspond to several solutions of
Eq. (1). Therefore, formally speaking, the sensitivity di-
verges at any g. Obviously the conventional diagram tech-
nique is unable to describe the existence of many solutions
of Eq. (1).

At g ¿ 1 the number of solutions of Eq. (16) shown
in Fig. 1 is of order g1�2. However, if g ¿ 1 not only
u1 but also higher modes with 1 , m , M are relevant.
In this case Eq. (14) has multiple solutions in the inter-
vals jumj , g1�2m22�3. Since both the amplitude of fluc-
tuations and the periods in mth direction of randomly
rippled hypersurfaces Fm�u1, . . . , uk , . . .� are of order unity,
the number of solutions N of Eqs. (14) and (1) is propor-
tional to the volume of the manifold jumj , g1�2m22�3,
m , M. As a result we have

N � gM�2
MY
1

m22�3 � exp�ag3�4� , (17)

where a � 1. Since the problem has multiple solutions
we have to redefine the concept of the sensitivity. Con-
sider, for example, the case where the angle of the wave
incidence u is changing and suppose that a solution of
Eq. (1) is following this change adiabatically. Then an
exponentially small change in u � exp�2ag3�4� will lead
to the disappearance of the solution (see, for example, line
3 in Fig. 1) and the system will exhibit a jump in other
solutions.

A phenomenon, similar to that considered above, may
occur in disordered metals with interacting electrons. The
system can be unstable with respect to the creation of ran-
dom magnetic moments. In this case n�r� would play the
role of magnetization density. This would correspond to
Finkelshtein’s scenario [13]. However, in this case to get
a self-consistency equation for n�r� we have to integrate
over electron energies up to the Fermi energy, which de-
creases the amplitude of mesoscopic fluctuations of n�r�.
As a result, at small electron-electron interaction constant
the situation with many solutions occurs only in the D � 2
case and the characteristic spatial scale of integration over
r will be of the order of the localization length in the linear
problem. This is the reason why the problem of interacting
electrons in disordered metals remains unsolved.

Above we considered the case when f�r, t� �
f�r, e� exp�iet� is a complex quantity and n�r� �
jf�r, t�j2 is time independent. Therefore the third har-
monic, proportional to exp�3iet�, is not generated. In the
case of propagation of electromagnetic waves in nonlinear
media f�r� should be considered as a real quantity, which
leads to the generation of third harmonics. In this case
the consideration presented above is valid only as long as
the amplitude of the third harmonic is smaller than the
amplitude of the first harmonic. It is the case provided
that kl2g�L ø 1. The latter criterion does not contradict
the requirement g ¿ 1.

Finally, we mention that the problem considered above
is similar to the problem of classical chaos, where the
sensitivity of trajectories of motion to changes in boundary
conditions exponentially increases with the sample size
(see, for example, [14]).
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