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Two families of exact global solutions to the equations of plasma equilibrium are derived. The solu-
tions model astrophysical jets and solar prominences and provide counterexamples to Parker’s hypothesis.

PACS numbers: 52.30.–q, 41.20.–q
The equations of plasma equilibrium are

curlB 3 B � m gradp, divB � 0 . (1)

The search for the global plasma equilibria was going on
during the past four decades since Eqs. (1) were first ap-
plied to the controlled thermonuclear fusion [1,2] and to
the astrophysical problems [3]. However, up until now,
all found exact solutions to Eqs. (1) which are not transla-
tionally invariant, either have singularities or unboundedly
grow at infinity [4–6], or are not localized [7]. Such solu-
tions have a very limited applicability in astrophysics.

The primary purpose of this paper is to report some
new exact solutions of the plasma equilibrium equations
that model astrophysical jets in the comoving frame of
reference and solar prominences. Such equilibria have to
be global; that means they have to satisfy the following
physical conditions in the cylindrical coordinates r , f, z:
(a) The magnetic field B and pressure p are smooth and
bounded in �3; (b) at r ! `, the magnetic field B !
0, the pressure p ! p1; (c) all magnetic field lines are
bounded in the radial variable r .

We derive two families of exact global axially symmetric
plasma equilibria which depend on an arbitrary number
of free parameters. The first one is defined in the whole
Euclidean space �3 and the second one in the half-space
z $ 0. These exact plasma equilibria model the variety of
magnetic fields observed in astrophysical jets and in solar
corona. The asymptotic value of pressure p1 in condition
(b) is the average pressure in the astrophysical outflow or
in solar coronal plasma. As usual, the gravitational force
2r gradC is included into the pressure gradient in (1),
in the approximation of constant density r. The plasma
equilibria are localized in the sense that the total magnetic
energy in any layer c1 , z , c2 is finite. For the solutions
of the second class, the total magnetic energy in the half-
space z $ 0 is finite.

The generic equilibrium solutions in �3 are quasiperi-
odic in variable z with N 2 1 frequencies which are pro-
portional to the numbers 1,

p
2,
p

3, . . . ,
p

N 2 1 with the
common factor

p
8b. It is proved that there are ap-

proximately 6N�p2 rationally independent square roots
in the sequence. Therefore the magnetic field B is truly
quasiperiodic in variable z.

The first of the exact solutions is the Gaussian distri-
bution B � exp�2br2�êz , p � p1 2 exp�22br2��2m.
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The Gaussian distribution plays a crucial role in the de-
rived global plasma equilibria for the solutions decrease at
r ! ` as rapidly as cN exp�2br2�r2N . For the exact non-
translationally invariant plasma equilibria, the magnetic
surfaces are either cylinders or nested tori with circular
magnetic axes. The distribution of these toroidal magnetic
surfaces is quasiperiodic in variable z.

As a secondary purpose, I would like to point out that the
two families of equilibrium solutions reported on provide
a counterexample to the well-known Parker’s hypothe-
sis [8–10] that concerns the small perturbations of the
z-invariant plasma equilibria and that has been around for
25 years. Parker writes [9], page 374: “Consider a mag-
netic field Bi�x, y� 1 ebi�x, y, z� in the neighborhood of
the general equilibrium field Bi�x, y�”; and after a detailed
study arrives at the conclusion on page 377:

“Thus, in the general case, we are led to the conclusion
that the invariance ≠bi�≠z � 0 (14.51) is a necessary con-
dition for equilibrium. Any field in which winding pattern
changes along the field, so that (14.51) is excluded by the
topology, cannot be in equilibrium.”

We call this conclusion Parker’s hypothesis. The ab-
sence of exact global solutions to Eqs. (1) made an in-
dependent verification of Parker’s hypothesis impossible.
Many consequences and generalizations were produced
assuming that the hypothesis is true (see [11–17] and
Parker’s 1994 book [10]).

We present counterexamples to Parker’s hypothesis
which satisfy all Parker’s conditions [9], pages 359–391,
and the above physical conditions (a), (b), and (c). We
construct a family of global z-invariant plasma equilibria;
each N th equilibrium possesses a �2N 2 1�-dimensional
linear space of global perturbations. The most important
feature of these exact solutions is that they do depend on
variable z and, hence, they are not z-invariant.

The z-quasiperiodicity of the equilibrium solutions
implies that they are very far not only from being
z-invariant but even from being z-periodic. In view of the
z-quasiperiodicity, the “winding pattern” of the magnetic
field lines is continuously changing along the variable z
and does not repeat.

To derive the exact plasma equilibria, we consider
Eqs. (1) for an axially symmetric magnetic field B [1,2]:

B � �cz êr 2 cr êz 1 Iêf��r , (2)
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where c�r , z� is the flux function and êr , êz , êf are the
coordinate unit vectors. The plasma equilibrium Eqs. (1)
are equivalent to the equations I � I�c�, p � p�c�, and
the Grad-Shafranov equation [1,2]:

≠2c

≠r2 2
1
r

≠c

≠r
1

≠2c

≠z2 1 I�c�I 0�c� 1 mr2p0�c� � 0 .

(3)

As in [7,18], let I�c� be linear, I�c� � ac, and
p�c� be quadratic, p�c� � p1 2 2b2c2�m, where
p1 . �2b2�m� max�c2�x, y, z�� and a and b . 0 are
arbitrary constants. Equation (3) takes the form

crr 2 cr�r 1 czz 1 a2c 2 4b2r2c � 0 . (4)

Using new variable x � 2br2 and separating variables
in Eq. (4) by the substitution c�r , z� � exp�2x�2� 3

P�x�T �z�, we obtain

xP00 2 xP0 1 �a2 1 l�P�8b � 0, T 00 � lT .
(5)

For l � 2v2, we have T �z� � a cos�vz� 1 b sin�vz�.
For the first Eq. (5), we are interested only in the polyno-
mial solutions P�x�. Such solutions exist if and only if
�a2 2 v2��8b � n, where n $ 0 is an integer. Hence,
we find the finite spectrum of the admissible values of v �
vn �

p
a2 2 8bn, n � 0, 1, . . . , N , N � �a2�8b�. The

first Eq. (5) results in the form xP00 2 xP0 1 nP � 0.
Differentiating, we obtain xL00 1 �1 2 x�L0 1 �n 2

1�L � 0, where L�x� � P0�x�. This equation defines
the classical Laguerre polynomials Ln21�x�. Hence, the
polynomials P�x� are primitive functions of the Laguerre
polynomials. We denote them L�

n�x�:

L�
n�x� �

Z x

0
Ln21�t� dt

� x 1

n21X
k�1

�21�k�n 2 1�!
k! �k 1 1�! �n 2 k 2 1�!

xk11. (6)

Thus, we obtain the exact solutions to Eq. (4):

cn�z, r� � exp�2br2�L�
n�2br2�

3 �an cos�vnz� 1 bn sin�vnz�� . (7)

For any fixed constants a and b, the formulas (7) define
N exact solutions to the linear Eq. (4). These solutions
satisfy conditions (a) and (b) above.

Exact global plasma equilibria.—For a2 � 8bN , we
get vN � 0 and exact solution (7) takes the form

cN �r� � aN exp�2br2�L�
N �2br2� . (8)

The corresponding magnetic field (2) is

BN � 2aNe2br2

�b�L�
N �x� 2 2L�0

N �x��êz

1
p

2bN L�
N �x�êf�r� , (9)

pN � p1 2 2b2c
2
N �r��m. This is a z-invariant global

plasma equilibrium.
Taking a linear combination of the exact solutions (7)
for n � 1, . . . , N 2 1, and (8), we obtain the �2N 2 1�-
dimensional linear space of exact solutions:

c�r , z� � e2br2

(
aNL�

N �x� 1

N21X
n�1

L�
n�x�

3 �an cos�vnz� 1 bn sin�vnz��

)
, (10)

where vn �
p

8b�N 2 n�, x � 2br2. For N $ 3, the
generic solutions (10) are quasiperiodic functions of z; for
example, if aN21 fi 0, aN22 fi 0.

Poloidal projections of the magnetic field lines coin-
cide with the level curves c�r , z� � const [1,2]. For-
mula (10) implies that these curves approach the straight
lines r � const when r ¿ 1 because its leading term is
2aN �22br2�N exp�2br2��N!. Hence, all magnetic field
lines and all current lines are bounded in the radial vari-
able r . Hence, the exact solutions (10) at aN fi 0 satisfy
the physical conditions (a), (b), and (c).

The first three polynomials L�
n�x� (6) have the form

L�
1�x� � x, L�

2 � x 2 x2�2, and L�
3�x� � x 2 x2 1

x3�6. Each polynomial L�
n�x� (6) has n 2 1 distinct

positive roots and the root x � 0; its greatest root xn is
.2n 2 3.

Example 1: The astrophysical jets model.—Figure 1
shows the quasiperiodic level curves c�r , z� � const
for the exact solution (10) for N � 3, b �
0.1: c�r , z� � e2br2�L�

3�x� 1 0.05 sin�2
p

2b z�L�
2�x� 1

0.05 sin�4
p

b �z 2 1��L�
1�x��, x � 2br2. These curves

are z-quasiperiodic for the frequencies 2
p

2b and 4
p

b are
rationally independent. Rotating curves on Fig. 1 around
the axis z, one obtains magnetic surfaces comprising
continuous families of cylinders and nested tori. The
innermost tori are circular magnetic axes.

Figure 2 represents the density of magnetic energy
B2�x, y, z��2m for the above plasma equilibrium for

FIG. 1. Quasiperiodic magnetic field lines for the astrophysical
jets model.
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FIG. 2. Density of magnetic energy B2�x, 0, 0.5��2m.

y � 0, z � 0.5 and b � 0.1, m � 0.5. It is evident
that B2�r, z� fi 0 everywhere and that B2�r , z� ! 0 at
r ! `. The magnetic energy is concentrated near the
axis of symmetry. This property means that the above
exact solution models an astrophysical jet in the comoving
frame of reference.

Exact global plasma equilibria in the half-space z $

0.—Putting in Eq. (5) l � k2
n, kn �

p
8bn 2 a2, n �

N , N 1 1, . . . , N � �a2�8b� 1 1, we find the exact so-
lutions Pn�x� � L�

n�x�, Tn�z� � exp�2knz�. Hence, we
find that the linear Eq. (4) has the exact solutions

c�r , z� � e2br2

"
N1mX
n�N

an exp�2
p

8bn 2 a2 z�

3 L�
n�2br2�

#
, (11)

where m $ 0, N $ 0 are arbitrary integers, a, b . 0,
and an are arbitrary constants, a2 # 8bN . The solutions
(11) are defined in the half-space z $ 0 and rapidly tend
to zero at r ! ` and at z ! ` if a2 , 8bN . The plasma
pressure p has the form p�c� � p1 2 2b2c2�m, where
p1 . �2b2�m� max�c2�x, y, z��, z $ 0. The correspond-
ing magnetic field (2), current J � curlB�m and pressure
p have no singularities in the half-space z $ 0. Hence, the
exact solutions (11) satisfy the physical conditions (a) and
(b). They satisfy also condition (c) if signan � �21�n.
Hence, the flux functions (11) define the global plasma
equilibria. For a2 , 8bN , the total magnetic energy of
the exact global plasma equilibria (11) in the half-space
z $ 0 is finite. These equilibria model the solar promi-
nences; the asymptotic value p1 is the average pressure in
the solar coronal plasma.

For a2 � 8bN , x � 2br2, the flux function (11) takes
the form

c�r , z� � e2br2

(
aNL�

N �x� 1

N1mX
n�N11

an

3 exp�2
p

8b�n 2 N� z�L�
n�x�

)
. (12)
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Example 2: The solar prominences model.—Figure 3
shows the magnetic field lines for the exact solu-
tion c�r , z� � exp�2br2� �exp�24

p
b z�L�

2�x� 2 0.5 3

exp�22
p

6b z�L�
3�x�� for a � 0, b � 10, x � 2br2.

The corresponding magnetic field B � �cz êr 2 cr êz��r
is pure poloidal, the current J � 4b2rcêf�m is circular.
All magnetic field lines are anchored at z � 0 (the solar
photosphere boundary).

Counterexamples to Parker’s hypothesis.—For the z-
invariant plasma equilibrium (8), the magnetic field BN

(9) is nonzero everywhere in the Euclidean space �3. In-
deed, if component Bf�x1� � 0, then L�

N �x1� � 0; hence,
L�0

N �x1� fi 0 because all roots of the polynomial L�
N �x� are

simple and therefore component Bz�x1� fi 0. Hence, we
have jBN j . B�R� jaN j . 0 in any domain 0 # r # R.
Let magnetic field B correspond to the exact solution
c�r , z� (10). For 0 # r # R, we have

jB 2 BN j

jBN j
, AN

C�R�
B�R�

,

AN �
1

jaN j

N21X
n�1

�janj 1 jbnj� .

(13)

Formulas (2), (8), and (10) imply that jB 2 BN j�jBN j !
0 at r ! `. Using this asymptotics and inequality (13),
we derive jB 2 BN j ø jBN j everywhere in �3 provided
that AN ø 1.

Formulas (6) imply jL�
n�x�j , xn�n!. Hence, for x .

N , we get jL�
1�x�j 1 · · · 1 jL�

N21�x�j , xN21��N 2 2�!.
For the flux function c (10), we obtain jc 2 cN j ,

jaN jAN exp�2br2�xN21��N 2 2�!. For x . xN , we have
L�

N �x� . �x 2 xN �N�N!, where xN is the greatest root of
L�

N �x�. Hence, jcN j . jaN j exp�2br2� �x 2 xN �N�N!,
and we get jc 2 cN j�jcN j , ANN2��x�1 2 xN�x�N �.
Hence, for x . N2xN , we obtain jc 2 cN j�jcN j , AN .
The same inequality is true for the magnetic field. Thus,
for AN ø 1, the perturbations (10) can be significant only

FIG. 3. Magnetic field lines for the solar prominences model.
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for x , N2xN . Substituting x � 2b�2, we find for the
length scale � of the perturbations (10): � # N

p
xN�2b.

The inequality jB 2 BN j ø jBN j means that the
plasma equilibria (10) at AN ø 1 are small perturbations
in the whole Euclidean space �3 of the z-invariant
equilibrium (8). Hence, we obtain that Parker’s condition
that “the local perturbation to the field is small compared
to the total field” [9], page 361, is satisfied everywhere.
Parker’s condition that the length of the flux tube L is
“large compared to the characteristic transverse scale
of variation � of the field” [9], page 362, is satisfied
because � # N

p
xN�2b and the flux tube length L can

be taken arbitrarily large for the z-invariant equilibrium
(8). Hence, L ¿ �. Parker’s condition that “the magnetic
field is analytic in its deviation e from the invariant field
Bi�x, y�” [9], page 378, is satisfied because the exact
solutions (10) are linear functions of small parameters
a1, b1, . . . , aN21, bN21. All perturbations (10) are not
z-invariant. Hence, the plasma equilibria (10) are coun-
terexamples to Parker’s hypothesis.

In the half-space z $ 0, the plasma equilibria (12) are
small perturbations of the z-invariant equilibria (8) at
AN � �jaN11j 1 · · · 1 jaN1mj��jaN j ø 1. The above
quoted Parker’s conditions are satisfied at AN ø 1. All
perturbations (12) are not z-invariant. Hence, the exact
solutions (12) in the half-space z $ 0 provide counter-
examples to Parker’s hypothesis.

One of the origins of the discrepancy with Parker’s re-
sults.—In his book [9], Parker writes (page 369): “We
suppose for convenience that, although Bz�x, y� may vary
widely, it does not vanish and change sign” and after a
study arrives at the statement: “The result can be written

≠

≠x
1

B2
z

≠C

≠x
1

≠

≠y
1

B2
z

≠C

≠y
1

≠

≠z
1

B2
z

≠C

≠z
� 0 .

This form is totally elliptic. In an infinite space its only
bounded solutions are constants, C � C.”

The proof of Parker’s hypothesis on pages 369–370
[9], and the proof of its generalization for magnetohydro-
dynamics [14], page 837, Eq. (62), are based on this state-
ment. We present a counterexample to this statement also.
Let F�u� be any smooth function such that F�u� . 0 for
all u and

R1`
2` F2�u� du , C1. Let h�x, y� be any harmonic

function: ≠2h�≠x2 1 ≠2h�≠y2 � 0. We define

Bz�x, y� � F�h�x, y�� . 0 ,

C�x, y, z� �
Z h�x,y�

2`
F2�u� du .

(14)

A direct verification proves that function C�x, y, z� does
satisfy the above elliptic equation, is bounded in �3, 0 ,

C�x, y, z� , C1, and nonconstant.
Conclusion.—We have presented two families, (10) and

(11), of the exact axially symmetric solutions to the plasma
equilibrium Eqs. (1). The equilibrium solutions depend on
an arbitrary number of parameters which can be adjusted so
that the topology of the magnetic field becomes arbitrarily
complex. The fields are a combination of nested cylindri-
cal magnetic surfaces and nested toroidal surfaces. The in-
nermost tori are circular magnetic axes that are linked with
the neighboring closed magnetic field lines. The generic
solutions in the family (10) are quasiperiodic in z, which
implies that the magnetic field lines never repeat in the z
direction, but can have a structure arbitrarily close to the
initial data. Their “winding pattern” changes continuously
with z, and does not repeat.

The equilibrium solutions (10), (11), and (12) are global,
and everywhere smooth. There are no discontinuities, and
there are no current sheets. These solutions model the va-
riety of magnetic field phenomena that have been observed
in the astrophysical jets (in the comoving frame of refer-
ence) and in the solar coronal plasma. The quasiperiodic
behavior, which is ergodic in z, is the best available analyti-
cal description of the spatial distribution of the magnetic
field and current in astrophysical jets.

Each of these families, (10) and (12), form counter-
examples to Parker’s hypothesis which was formulated
over 25 years ago, and has been the starting point of a
large body of work that has been published since that time.
The most recent papers which use Parker’s hypothesis in
an essential way are the 1996 paper [12] and Parker’s 1994
book [10].
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