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Error Thresholds for Quasispecies on Dynamic Fitness Landscapes
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In this paper we investigate error thresholds on dynamic fitness landscapes. We show that there exists
both a lower and an upper threshold, representing limits to the copying fidelity of simple replicators.
The lower bound can be expressed as a correction term to the error threshold present on a static
landscape. The upper error threshold is a new limit that only exists on dynamic fitness landscapes.
We also show that for long genomes and/or highly dynamic fitness landscapes there exists a lower
bound on the selection pressure required for the effective selection of genomes with superior fitness
independent of mutation rates, i.e. there are distinct nontrivial limits to evolutionary parameters in
dynamic environments.

PACS numbers: 87.23.Kg, 87.10.+e, 87.15.Aa
e.
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Ever since Eigen’s work on replicating molecules i
1971 [1], the concept of quasispecies has proven to
a very fruitful way of modeling the fundamental behavio
of evolution. A quasispecies is an equilibrium distributio
of closely related gene sequences, localized around one
a few sequences with high fitness (the master sequen
or wild type) [2]. The kinetics of these simple system
has been studied in great detail as this formulation h
allowed many of the techniques of statistical physics
be applied to replicator and evolutionary systems. See
instance [1,3–12], and references therein.

The appearance in many of these models of an er
threshold (or error catastrophe) as an upper bound
the mutation rate, above which no effective selection c
occur, has important implications for biological system
In particular, it places limits on maintainable amount
of genetic information [1,13,14], thus restricting possibl
theories for the origins of life. It is interesting to note
that some RNA viruses seem to have evolved mutati
rates that are close to the error threshold [14,15], a
that in many cases the quasispecies concept seems to
valuable descriptor of viral diversity [16].

Studies of quasispecies until now have focused o
static fitness landscapes. Many organisms in natu
however, live in a quickly changing environment [17]
This is especially important for viruses and microbia
pathogens that must survive in a host with a high
dynamic immune system for which there only exist tigh
and temporary niches with high fitness (for the pathoge
[18]. There is a body of extant work dealing with the
mathematics of evolution in changing environments
the context of both population genetics models ([19–21
for example) and coevolutionary systems (particularly
ecological frameworks) ([22], for example). Neither o
these approaches are particularly suitable for investigat
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the quickly changing multilocus systems that we examin
In particular, they give little indication of the kinds of
dynamics we find and characterize below.

In brief, a quasispecies consists of a population of se
replicating genomes, each represented as a sequenc
basessk , �s1s2 · · · sn�. Hereafter we will assume binary
bases�1, 0� and that all sequences have equal lengthn.
Every genome is thus a binary string�011001 . . .�, indexed
by an integerk (0 # k , 2n).

To describe how mutations affect a population w
define Wl

k as the probability that replication of genom
l gives genomek as offspring. We will only consider
point mutations which conserve the genome length a
occur independent of position in the genome with ra
m � 1 2 q (whereq is the copying accuracy per base
The equations describing the dynamics of the populati
now take a relatively simple form [7]

�xk �
X

l

Wl
kAlxl 2 fxk , (1)

wherexk is the relative concentration andAk the fitness
(replication rate) of genomek. f �

P
l Alxl ensures the

total normalization of the population with
P

l xl � 1.
To create a dynamic landscape we modify the standa

single-peaked fitness landscape [8] so that the fitne
peak moves in genotype space, resulting in differe
optimal gene sequences at different times. Formal
we write Ak�t� � s and Al � 1 ;l fi k�t�, where the
(changing) best genotypek�t� describes how the peak
(master sequence) moves through sequence space. In
paper the peak moves to one of its closest neighb
(chosen randomly) at regular time intervalst. This model
is inspired by analogy to the existence of a tight nich
for an organism (perhaps viral), where changes to t
genotypic composition of the niche are more importa
© 1999 The American Physical Society 191
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than small modifications to the reproductive advantage the
niche confers (the latter case would have Ak�t�; see [23]).
One could also consider probabilistic movement, and to
more distant neighbors.

The independence of mutation rate from genome posi-
tion imposes a symmetry on the rate equations, enabling
us to divide the relative concentrations into error classes
Gi described by their Hamming distance i from the mas-
ter sequence (G0). This reduces the effective dimension of
the sequence space from 2n to n 1 1, thereby making the
problem significantly more tractable. The use of asymmet-
ric evolution operators (such as recombination) or fitness
landscapes is obviously more problematic and is the sub-
ject of ongoing work. When the fitness peak moves, this
landscape symmetry will be broken: one sequence in G1
will be singled out as the new master sequence. We as-
sume the dynamics to be slow enough and the probability
of the peak quickly returning to a previously optimal geno-
type is small enough for this to not be a problem, i.e., the
(temporary) existence of a large concentration at the pre-
vious peak genotype will have little effect on initial con-
centrations for subsequent moves.

On average then, moving the fitness peak corresponds
to applying the following coordinate transformation to the
concentration vector (written in terms of error classes i and
j):

Rij �
n 2 i

n
di,j21 1

i
n

di,j11 . (2)

To study the population evolution we divide the dynamics
into cycles of length t, the time between shifts of the fitness
peak. Between moves the evolution proceeds as for a static
landscape [Eq. (1)]. When a shift occurs we then apply
the Rij transformation to the concentration vector. The
resulting concentration distribution is used as the initial
condition for the rate equations from time t to 2t, and
so on. The resulting population dynamics are shown in
Fig. 1 (after the initial transient). A single unit on the
(continuous) time scale of the rate equations is identified
as a “generation” as it is obviously the mean population
replacement time of the equivalent discretized dynamics.

For a static landscape the existence of an error threshold
is intuitively clear: the superior fitness (and hence growth
rate) of the master sequence must compensate for the
mutational loss of G0 individuals. The picture of the
error threshold on a dynamic fitness landscape is different:
what determines the critical mutation rate is whether
the master sequence will have time to regrow between
the shifts of the fitness peak and whether any kind of
equilibrium can be reached within this dynamic. The
existence and uniqueness of such a fixed cycle can be
easily shown by noting that evolution over a full shift
cycle is Markovian—both the shift and the evolution
in the static part of the cycle are Markovian processes.
Thus error thresholds are independent of initial population
192
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FIG. 1. n � 50, t � 5, s � 10. The time evolution of the
concentrations of the first three error classes, the genotypic
composition of which changes as the landscape moves. The
mutation rate is such that between shifts the population is
dominated by the different master sequences.

distribution (though this is not the case for recombination,
e.g., [24]).

To find an analytical approximation for any error
threshold we will obviously have to include the dynamics
of error class one as well as the master sequence. We
can write an approximation to the rate equations for the
master sequence G0 � xmas and a representative member
j of G1:

�xmas � �Qs 2 f�xmas ,

�x1j � Q̃sxmas 1 �Q 2 f�x1j ,
(3)

where f � sxmas 1 1 2 xmas, Q � qn is the genomic
copy fidelity and mutations from one sequence into a
neighboring sequence occur with probability Q̃ � �1 2

q�qn21. In deriving Eq. (3) back mutations are neglected
in the standard way so that the xmas dynamics are de-
coupled from x1j i.e., only the dominant terms in each
equation remain and taking xmas such that Qsxmas ¿
Q̃

P
j x1j and Q̃sxmas ¿ Q̃nx2i ;i [ G2. We now as-

sume x1j�0� � 0 as x1j is (almost always) in the sparsely
populated G2 before the shift. Using this boundary con-
dition we can solve the linearized forms of Eq. (3) [lin-

earized by a change of variables y�t� � e
Rt

f�s� dsx�t�] for
the non-normalized concentrations

ymas�t� � ymas�0�e�Qs�t , (4)

y1j�t� � ymas�0�
µ

�e�Qs�t 2 e�Q�t� �1 2 q�s
�s 2 1�q

∂
. (5)

To find an error threshold we are interested in the growth
of ymas relative to that of a representative genotype yE

some distance from the master sequence (i.e., in the so-
called error tail [6]). If we assume that in the error tail a
detailed balance holds between mutations into and out of
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yE , then its non-normalized growth will be by a factor of
et (as AE � 1). In the absence of movement the growth
of ymas is given by Eq. (4) and thus the master-sequence
occupancy is maintained relative to a member of the
error tail when eQst $ et ! Qc $ s21, i.e., we find the
standard stationary error threshold. When the landscape
is made time dependent the initial (non-normalized)
concentration of the master sequence at the beginning of
a new shift cycle (starting at time t) will be y1j�t�. Thus
the (non-normalized) growth of the master sequence over
a full shift cycle is k0 � y1j�t��ymas�0�. To find error
threshold(s) we again compare this growth to that of yE

over the same cycle, finding a normalized growth factor
for xmas: k � k0�et . If k , 1 the quasispecies will die
out and the distribution of concentrations will eventually
become uniform. Thus

k �
�e�Qs21�t 2 e�Q21�t� �1 2 q�s

�s 2 1�q
$ 1 (6)

gives a condition for the long term maintenance of a
nonzero population on the (moving) normalized master
sequence xmas. Hence we define the error threshold(s) to
be the root(s) of Eq. (6).

Figure 2(b) shows the region where Eq. (6) can be
expected to hold. The figure also shows the existence
of two error-thresholds, qcm and qm. The lower threshold
qcm is a modified version of the classic error-threshold qc

present on static landscapes, with a perturbation resulting
from the movement of the fitness landscape. Figure 2(a)
shows the full time-dynamics [Eq. (1)] of xmas when
qc , q , qcm, i.e., a population that should stabilize on
a static landscape cannot survive when it moves.

The upper threshold qm is a new phenomenon that ap-
pears only on dynamic or moving (m) fitness landscapes.
The existence of such a point intuitively clear—if the mu-
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FIG. 2. (a) qc � 0.968 , q � 0.99 , qcm � 0.9916 the
population is below the (dynamic) threshold and so becomes
extinct; cf. Fig. 1. (b) k is plotted as a function of the copying
fidelity q. The shaded region is where self-replicating systems
are able to maintain themselves. n � 50, t � 2, s � 5 for
both graphs.
tation rate is very close to zero, there will not be enough
individuals present on the new peak position when the
shift occurs to grow and maintain a steady occupancy of
the master sequence, i.e., the peak moves out from un-
der the quasispecies and the population will not be able to
track shifts in the fitness landscape.

Analytical approximations to the error thresholds can
be found by assuming different dominant terms. To find
the lower threshold qcm we assume the exponential terms
in k determine the growth behavior. We can then find a
first order correction in t to the static threshold by solving
Eq. (6) for Q (in terms of q) and then approximating
q � s21�n

Qcm �
1
s

2
ln�s1�n 2 1�

st
, (7)

where we also made the approximation s

s21 � 1. Note
that Qcm ! Qc when t ! `, i.e., we recover the station-
ary landscape limit.

Figure 3 shows the cm threshold and demonstrates
the accuracy of the analytic approximation to qcm given
by Eq. (7). This accuracy is observed at the three
significant figure level for an order of magnitude change
in both s and t. Both the qualitative and quantitative
dynamics of both error thresholds have been further
verified by computer simulations using large populations
to approximate the deterministic dynamics.

In Eq. (7) the critical copying fidelity Qcm depends on
the genome length. This is not surprising since the fitness
peak shifts into a specific member of G1, which consists
of n different gene sequences. It is important to note
that this is a direct consequence of the dynamic nature of
the fitness landscape since Qc is independent of genome
length. The perturbation from the static error threshold
increases with genome length and when n becomes large
enough the lower error threshold coincides with the upper.
We will discuss the consequences of this shortly.
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FIG. 3. The mean fitness f (averaged over a full shift cycle
once equilibrium had been reached) found by numerically
solving the full rate equations [Eq. (1)]. t � 2, n � 50, s �
10. The error threshold occurs at the approximated analytic
value qcm � 0.973.
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An analytical approximation to the new upper threshold
can be found by taking Q to be very close to 1: therefore
the �1 2 q� term determines whether k , 1. Solving
Eq. (6) for this term, then again assuming s

s21 � 1 and
putting Q � 1, gives

qm � 1 2 e2�s21�t . (8)

Explicit numerical solutions of the full dynamics confirm
that this threshold exists and is predicted by Eq. (8). For
most values of s and t, qm is very close to 1 [e.g.,
�s 2 1�t � 50 ) mm � 10222]. Computer simulations
indicate that finite population affects are, however, much
more significant for the upper error threshold than for
the static threshold (for which, see [6,11] and others). In
real biological populations this may be important. More
detailed studies of these issues are under preparation.

On a static fitness landscape it is always possible to
find copying fidelities high enough for evolution to be
effective. It turns out that this is no longer the case for
dynamic fitness landscapes. The strong dependence of
Qm on n means that as the genome length increases, the
region between the two error thresholds where organisms
may survive narrows, i.e., the shaded region of Fig. 2(b)
contracts. Thus, perhaps surprisingly, there exist dynamic
fitness landscapes (s, t, n) where solutions to Eq. (6)
cease to exist. To find this convergence point we assume
the leading behavior of Eq. (6) is dominated by the factor
e�qns21�t�1 2 q�. This gives

qmax � 1 2
1

stn
(9)

as the turning point of k�q� [see Fig. 2(b)] which we can
use to find k�qmax� $ 1 as the definition of a survivable
(or evolvable) landscape. The essence of this new result
is that the selective advantage required for the survival of
a quasispecies becomes large for fast-moving landscapes
and long genome lengths. Again the effects of finite
population sizes may be quite significant and are under
investigation.

Thus we have demonstrated the existence of, and de-
rived analytic approximations for, two quasispecies error
thresholds on a simple time-dependent fitness landscape.
The lower threshold qcm is a perturbation of the well-
known (static) error catastrophe, accounting for the desta-
bilizing effect of the changing environment. The existence
of an upper bound on the copying fidelity qm is a new
phenomenon, only present in dynamic environments. This
upper bound results in the surprising existence of critical
regions of the landscape parameters (selection strength s,
genome length n, and the rate of environmental change t)
where the two thresholds coincide (or cross), and therefore
no effective selection can occur no matter what copying
fidelity can be evolved. Because of the simplicity of our
model and its closeness to Eigen’ s original formulation, we
194
hope that the general nature of these results will be funda-
mental in many time-dependent landscapes.
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