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In this paper we investigate error thresholds on dynamic fitness landscapes. We show that there exists
both a lower and an upper threshold, representing limits to the copying fidelity of simple replicators.
The lower bound can be expressed as a correction term to the error threshold present on a static
landscape. The upper error threshold is a new limit that only exists on dynamic fitness landscapes.
We also show that for long genomes and/or highly dynamic fitness landscapes there exists a lower
bound on the selection pressure required for the effective selection of genomes with superior fithess
independent of mutation rates, i.e. there are distinct nontrivial limits to evolutionary parameters in
dynamic environments.

PACS numbers: 87.23.Kg, 87.10.+e, 87.15.Aa

Ever since Eigen’s work on replicating molecules inthe quickly changing multilocus systems that we examine.
1971 [1], the concept of quasispecies has proven to bk particular, they give little indication of the kinds of
a very fruitful way of modeling the fundamental behavior dynamics we find and characterize below.
of evolution. A quasispecies is an equilibrium distribution  In brief, a quasispecies consists of a population of self-
of closely related gene sequences, localized around one ogplicating genomes, each represented as a sequence of
a few sequences with high fitness (the master sequendeasessy, (sis;---s,). Hereafter we will assume binary
or wild type) [2]. The kinetics of these simple systemsbases{1,0} and that all sequences have equal length
has been studied in great detail as this formulation haEvery genome is thus a binary strif@l 1001 .. .), indexed
allowed many of the techniques of statistical physics tdy an integek (0 < k < 2").
be applied to replicator and evolutionary systems. See for To describe how mutations affect a population we
instance [1,3—12], and references therein. define W, as the probability that replication of genome
The appearance in many of these models of an errar gives genomet as offspring. We will only consider
threshold (or error catastrophe) as an upper bound opoint mutations which conserve the genome length and
the mutation rate, above which no effective selection camccur independent of position in the genome with rate
occur, has important implications for biological systems.u = 1 — g (wheregq is the copying accuracy per base).
In particular, it places limits on maintainable amountsThe equations describing the dynamics of the population
of genetic information [1,13,14], thus restricting possiblenow take a relatively simple form [7]
theories for the origins of life. It is interesting to note . ,
that some RNA viruses seem to have evolved mutation i = > Widix — fx, 1)
rates that are close to the error threshold [14,15], and !
that in many cases the quasispecies concept seems to bae/kaerex; is the relative concentration amt}, the fitness
valuable descriptor of viral diversity [16]. (replication rate) of genome. f = >, A;x; ensures the
Studies of quasispecies until now have focused orotal normalization of the population with, x; = 1.
static fitness landscapes. Many organisms in nature, To create a dynamic landscape we modify the standard
however, live in a quickly changing environment [17]. single-peaked fitness landscape [8] so that the fitness
This is especially important for viruses and microbialpeak moves in genotype space, resulting in different
pathogens that must survive in a host with a highlyoptimal gene sequences at different times. Formally,
dynamic immune system for which there only exist tightwe write A,y = o and A; = 1 VI # k(z), where the
and temporary niches with high fithness (for the pathogenjchanging) best genotypé(r) describes how the peak
[18]. There is a body of extant work dealing with the (master sequence) moves through sequence space. In this
mathematics of evolution in changing environments inpaper the peak moves to one of its closest neighbors
the context of both population genetics models ([19-21](chosen randomly) at regular time intervals This model
for example) and coevolutionary systems (particularly inis inspired by analogy to the existence of a tight niche
ecological frameworks) ([22], for example). Neither of for an organism (perhaps viral), where changes to the
these approaches are particularly suitable for investigatingenotypic composition of the niche are more important
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than small modifications to the reproductive advantage the
niche confers (the latter case would have A, (r); see [23]).
One could also consider probabilistic movement, and to
more distant neighbors.

The independence of mutation rate from genome posi-
tion imposes a symmetry on the rate equations, enabling
us to divide the relative concentrations into error classes
I'; described by their Hamming distance i from the mas-
ter sequence (I'y). Thisreducesthe effective dimension of
the sequence space from 2" to n + 1, thereby making the
praoblem significantly moretractable. The use of asymmet-
ric evolution operators (such as recombination) or fitness
landscapes is obviously more problematic and is the sub-
ject of ongoing work. When the fitness peak moves, this
landscape symmetry will be broken: one sequence in I’y
will be singled out as the new master sequence. We as-
sume the dynamics to be slow enough and the probability
of the peak quickly returning to a previously optimal geno-
type is small enough for this to not be a problem, i.e., the
(temporary) existence of alarge concentration at the pre-
vious peak genotype will have little effect on initial con-
centrations for subsegquent moves.

On average then, moving the fithess peak corresponds
to applying the following coordinate transformation to the
concentration vector (written interms of error classes i and

)

n—1i

i
R;; = 0ij-1 t ;5i,j+1- (2

To study the population evolution we divide the dynamics
into cycles of length 7, the time between shifts of the fitness
peak. Between movesthe evolution proceedsasfor astatic
landscape [Eg. (1)]. When a shift occurs we then apply
the R;; transformation to the concentration vector. The
resulting concentration distribution is used as the initial
condition for the rate equations from time 7 to 27, and
so on. The resulting population dynamics are shown in
Fig. 1 (after the initial transient). A single unit on the
(continuous) time scale of the rate equations is identified
as a “generation” as it is obviously the mean population
replacement time of the equivalent discretized dynamics.
For a static landscape the existence of an error threshold
isintuitively clear: the superior fitness (and hence growth
rate) of the master sequence must compensate for the
mutational loss of T’y individuals. The picture of the
error threshold on a dynamic fitness landscape is different:
what determines the critical mutation rate is whether
the master sequence will have time to regrow between
the shifts of the fitness peak and whether any kind of
equilibrium can be reached within this dynamic. The
existence and uniqueness of such a fixed cycle can be
easily shown by noting that evolution over a full shift
cycle is Markovian—both the shift and the evolution
in the static part of the cycle are Markovian processes.
Thus error thresholds are independent of initial population
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FIG.1. n=50,7 =5,0 = 10. The time evolution of the
concentrations of the first three error classes, the genotypic
composition of which changes as the landscape moves. The
mutation rate is such that between shifts the population is
dominated by the different master sequences.

distribution (though this is not the case for recombination,
eg. [24]).

To find an analytical approximation for any error
threshold we will obviously have to include the dynamics
of error class one as well as the master sequence. We
can write an approximation to the rate equations for the
master sequence 'y = x5 and a representative member
j of I'y:

Xmas = (Qo — f)xmas s

e ©)
X1 = Q0xXmas + (Q — fxi),
where f = o xpas + 1 — xmas, @ = ¢" is the genomic
copy fidelity and mutations from one sequence into a
neighboring sequence occur with probability O = (1 —
g)g"~'. Inderiving Eq. (3) back mutations are neglected
in the standard way so that the x,,s dynamics are de-
coupled from x;; i.e., only the dominant terms in each
equation remain and taking xp.s such that Qo xp,s >
0% xi; and Qoxpmes > Onxy Vi € T,. We now as-
sume x;;(0) = 0 as x;; is (@most always) in the sparsely
populated I', before the shift. Using this boundary con-
dition we can solve the linearized forms of Eq. (3) [lin-

earized by a change of variables y(r) = eJ FWds (1) for
the non-normalized concentrations

ymas(t) = ymas(o)e(Qo)t’ (4)

Qo) _ ,(Q)t —
)’1j(l) = ymas(o) ((6 (0_6_ ]))(ql q)a’) . (5)

To find an error threshold we are interested in the growth
of ymas relative to that of a representative genotype yg
some distance from the master sequence (i.e., in the so-
caled error tail [6]). If we assume that in the error tail a
detailed balance holds between mutations into and out of
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vEe, then its non-normalized growth will be by a factor of
e' (asAg = 1). In the absence of movement the growth
of ymas 1S given by Eq. (4) and thus the master-sequence
occupancy is maintained relative to a member of the
error tail when e97! = ¢! — Q. = o7}, i.e,, wefind the
standard stationary error threshold. When the landscape
is made time dependent the initial (non-normalized)
concentration of the master sequence at the beginning of
anew shift cycle (starting at time 7) will be y;;(7). Thus
the (non-normalized) growth of the master sequence over
a full shift cycle is k’ = y;;(7)/ymas(0). To find error
threshold(s) we again compare this growth to that of yg
over the same cycle, finding a normalized growth factor
for xmas: kK = k'/e™. If k < 1 the quasispecies will die
out and the distribution of concentrations will eventually
become uniform. Thus

(e(QU*I)T — e(Q*I)T) (1 - qo
(0 — 1)q

gives a condition for the long term maintenance of a
nonzero population on the (moving) normalized master
sequence xpn,s. Hence we define the error threshold(s) to
be the root(s) of Eq. (6).

Figure 2(b) shows the region where Eq. (6) can be
expected to hold. The figure also shows the existence
of two error-thresholds, g., and ¢,,. The lower threshold
gem 1S amodified version of the classic error-threshold g,
present on static landscapes, with a perturbation resulting
from the movement of the fitness landscape. Figure 2(a)
shows the full time-dynamics [Eq. (1)] of xmas When
qc < g < gem, i-€, apopulation that should stabilize on
a static landscape cannot survive when it moves.

The upper threshold ¢, is a new phenomenon that ap-
pears only on dynamic or moving (m) fitness landscapes.
The existence of such a point intuitively clear—if the mu-
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population is below the (dynamic) threshold and so becomes
extinct; cf. Fig. 1. (b) « is plotted as a function of the copying
fidelity g. The shaded region is where self-replicating systems
are able to maintain themselves. n = 50,7 = 2,0 = 5 for
both graphs.

tation rate is very close to zero, there will not be enough
individuals present on the new peak position when the
shift occurs to grow and maintain a steady occupancy of
the master sequence, i.e., the peak moves out from un-
der the quasi species and the population will not be able to
track shifts in the fitness landscape.

Analytical approximations to the error thresholds can
be found by assuming different dominant terms. To find
the lower threshold g., we assume the exponential terms
in k determine the growth behavior. We can then find a
first order correction in 7 to the static threshold by solving
Eqg. (6) for Q (in terms of ¢) and then approximating
g=o "

I/n _
0y ~ L - = 1) @

(o agT

where we also made the approximation =% ~ 1. Note
that Q.., — Q. when 7 — o, i.e., we recover the station-
ary landscape limit.

Figure 3 shows the c¢m threshold and demonstrates
the accuracy of the analytic approximation to g, given
by Eq. (7). This accuracy is observed at the three
significant figure level for an order of magnitude change
in both o and 7. Both the qualitative and quantitative
dynamics of both error thresholds have been further
verified by computer simulations using large populations
to approximate the deterministic dynamics.

In Eq. (7) the critical copying fidelity O.., depends on
the genome length. Thisis not surprising since the fitness
peak shifts into a specific member of I';, which consists
of n different gene sequences. It is important to note
that thisis a direct consegquence of the dynamic nature of
the fitness landscape since Q. is independent of genome
length. The perturbation from the static error threshold
increases with genome length and when n becomes large
enough the lower error threshold coincides with the upper.
We will discuss the consequences of this shortly.
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FIG. 3. The mean fitness f (averaged over a full shift cycle
once equilibrium had been reached) found by numerically
solving the full rate equations [Eq. (1)]. 7 =2,n = 50,0 =
10. The error threshold occurs at the approximated analytic
value dem = 0.973.
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An anaytical approximation to the new upper threshold
can be found by taking Q to be very close to 1: therefore
the (1 — ¢) term determines whether k < 1. Solving
Eg. (6) for this term, then again assuming == =~ 1 and
putting Q = 1, gives

gm =1 — e o7 (8)

Explicit numerical solutions of the full dynamics confirm
that this threshold exists and is predicted by Eq. (8). For
most values of ¢ and 7, ¢, is very close to 1 [eqg.,
(o0 — 1)t =50 = u,, = 107??]. Computer simulations
indicate that finite population affects are, however, much
more significant for the upper error threshold than for
the static threshold (for which, see [6,11] and others). In
real biological populations this may be important. More
detailed studies of these issues are under preparation.

On a datic fitness landscape it is adways possible to
find copying fidelities high enough for evolution to be
effective. It turns out that this is no longer the case for
dynamic fitness landscapes. The strong dependence of
0., on n means that as the genome length increases, the
region between the two error thresholds where organisms
may survive narrows, i.e., the shaded region of Fig. 2(b)
contracts. Thus, perhaps surprisingly, there exist dynamic
fitness landscapes (o, 7, n) where solutions to Eq. (6)
cease to exist. To find this convergence point we assume
the leading behavior of Eq. (6) is dominated by the factor
e o=D7(1 — ¢). Thisgives

Gmax = 1 — —— 9

as the turning point of «(g) [see Fig. 2(b)] which we can
use to find k(gmax) = 1 as the definition of a survivable
(or evolvable) landscape. The essence of this new result
is that the selective advantage required for the survival of
a quasispecies becomes large for fast-moving landscapes
and long genome lengths. Again the effects of finite
population sizes may be quite significant and are under
investigation.

Thus we have demonstrated the existence of, and de-
rived analytic approximations for, two quasispecies error
thresholds on a simple time-dependent fitness landscape.
The lower threshold ¢.., is a perturbation of the well-
known (static) error catastrophe, accounting for the desta-
bilizing effect of the changing environment. The existence
of an upper bound on the copying fidelity g,, is a new
phenomenon, only present in dynamic environments. This
upper bound results in the surprising existence of critical
regions of the landscape parameters (selection strength o,
genome length n, and the rate of environmental change 7)
where the two thresholds coincide (or cross), and therefore
no effective selection can occur no matter what copying
fidelity can be evolved. Because of the ssimplicity of our
model and its closenessto Eigen’ soriginal formulation, we
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hope that the general nature of these results will be funda-
mental in many time-dependent landscapes.
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