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“Light bullets” are multidimensional solitons which are localized in both space and time. We show
that such solitons exist in two- and three-dimensional self-induced transparency media and that they are
fully stable. Our approximate analytical calculation, backed and verified by direct numerical simulations,
yields the multidimensional generalization of the one-dimensional sine-Gordon soliton.
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The concept of multidimensional solitons that are local-
ized in both space and time, alias “light bullets” (LBs), was
pioneered by Silberberg [1], and has since then been inves-
tigated in various nonlinear optical media, with particu-
lar emphasis on the question of whether these solitons are
stable or not. For a second-harmonic generating medium,
the existence of stable two- and three-dimensional (2D and
3D) solitons was predicted as early as in 1981 [2], fol-
lowed by studies of their propagation and stability against
collapse [3–6], and of analogous 3D quantum solitons [7].
In a nonlinear Schrödinger model both stable and unstable
LBs were found [8] and it was suggested that various mod-
els describing fluid flows yield stable 2D spatiotemporal
solitons [9]. Recently, the first experimental observation
of a quasi-2D “bullet” in a 3D sample was reported in
Ref. [10].

In this Letter we predict a new, hitherto unexplored, type
of LBs, obtainable by 2D or 3D self-induced transparency
(SIT). SIT involves the solitary propagation of an elec-
tromagnetic pulse in a near-resonant medium, irrespective
of the carrier-frequency detuning from resonance [11,12].
The SIT soliton in 1D near-resonant media [13] is expo-
nentially localized and stable. In order to investigate the
existence of light bullets in SIT, i.e., solitons that are lo-
calized in both space and time, one has to consider a 2D
or 3D near-resonant medium. Here we present an approxi-
mate analytical solution of this problem, which is checked
by and in very good agreement with direct numerical
simulations.

Our starting points are the two-dimensional SIT equa-
tions in dimensionless form [14]

2iExx 1 Ez 2 P � 0 , (1a)

Pt 2 EW � 0 , (1b)

Wt 1
1
2

�E �P 1 P �E � � 0 . (1c)

Here E and P denote the slowly varying amplitudes of
the electric field and polarization, respectively, W is the
inversion, z and x are, respectively, the longitudinal and
transverse coordinates (in units of the effective absorption
length aeff), and t is the retarded time (in units of the input
pulse duration tp). The Fresnel number F (F . 0), which
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governs the transverse diffraction in 2D and 3D propaga-
tion, is incorporated in x and the detuning DV of the car-
rier frequency from the central atomic resonance frequency
is absorbed in E and P [15]. We have neglected polar-
ization dephasing and inversion decay, considering pulse
durations that are much shorter than the corresponding re-
laxation times. Equations (1) are then compatible with
the local constraint jP j2 1 W2 � 1, which corresponds
to conservation of the Bloch vector [14].

The first nontrivial question is to find a Lagrangian rep-
resentation for these 2D equations, which is necessary for
adequate understanding of the dynamics. To this end, we
rewrite the equations in a different form, introducing the
complex variable f defined as follows [16]:

f �
1 1 W

P
�

P �

1 2 W
() P �

2f�

ff� 1 1
,

W �
ff� 2 1
ff� 1 1

.
(2)

Equations (1b) and (1c) can then be expressed as a single
equation, ft 1 �E �2�f2 1 �1�2�E � � 0. Next, we de-
fine a variable f so that f � 2ft��Ef�. In terms of
f, the previous equation becomes ftt 2 �Et�E �ft 1

�1�4�jE j2f � 0. This equation is equivalent to

ft �
1
2
Eg , (3a)

gt � 2
1
2
E �f , (3b)

with g � ff. Applying the same transformations to
Eq. (1a) yields

2iExx 1 Ez 2 2fg� � 0 . (4)

The Lagrangian density corresponding to Eqs. (3) and (4)
can now be found in an explicit form,
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Now we proceed to search for LB solutions. Before
resorting to direct simulations, we obtain an analytical ap-
proximation of the solutions. The starting point for this
approximation is the well-known soliton solution for 1D
SIT (the sine-Gordon soliton) [12,14,17]:

E �t, z� � 62a sechQ , (6a)

P �t, z� � 62 sechQ tanh Q , (6b)

W�t, z� � sech 2Q 2 tanh2Q , (6c)

with Q�t, z� � at 2
z
a 1 Q0, and a, Q0 arbitrary real

parameters. Equation (6a) is also called a 2p pulse, be-
cause its area

R`
` E �t, z� dt � 62p .

Returning to the 2D SIT equations, we notice
by straightforward substitution into Eqs. (3) that a
2D solution with separated variables, in the form
E �t, z, x� � E1�t, z�E2�x� (and similarly for f and g),
does not exist. To look for less obvious solutions, we first
split Eqs. (1) into their real and imaginary parts, writing
E � E1 1 iE2 and P � P1 1 iP2:

E2xx 1 E1z 2 P1 � 0 , (7a)

E1xx 2 E2z 1 P2 � 0 , (7b)

P1t 2 E1W � 0 , (7c)

P2t 2 E2W � 0 , (7d)

Wt 1 E1P1 1 E2P2 � 0 . (7e)

In the absence of the x dependence, these equations are
invariant under the transformation �E1,P1� $ �E2,P2�.
This suggests a 1D solution in which real and imaginary
parts of the field and polarization are equal, E1 � E2 and
P1 � P2, and such that the total field and polarization re-
duce to the sine-Gordon (SG) solution (6). Our central
result is an approximate but quite accurate (see below) ex-
tension of this solution, applicable to the 2D SIT equations.
In terms of the original physical variables it is given by
E �t, z, x� � 62a
p

sechQ1 sechQ2 exp�2iDVt 1 ip�4� , (8a)

P �t, z, x� � 6
p

sechQ1sechQ2

µ
�tanhQ1 1 tanhQ2�2

1
1
4

a2C4��tanhQ1 2 tanhQ2�2 2 2�sech2Q1 1 sech2Q2��2

∂1�2

exp�2iDVt 1 im� ,

(8b)

W�t, z, x� �

∑
1 2 sechQ1 sechQ2

µ
�tanhQ1 1 tanhQ2�2

1
1
4

a2C4��tanhQ1 2 tanhQ2�2 2 2�sech2Q1 1 sech2Q2��2

∂∏1�2

, (8c)
with

Q1 � at 2
z
a

1 Q0 1 Cx ,

Q2 � at 2
z
a

1 Q0 2 Cx ,

m � arctan�P2�P1� .

Here a, Q0, and C are real constants. Equations (8) satisfy
the two-dimensional SIT equations (7a) and (7b) and obey
the normalization condition P 2

1 1 P 2
2 1 W2 � 1. They

reduce to the sine-Gordon solution for C � 0. The accu-
racy to which Eqs. (8) satisfy Eqs. (7c)–(7e) is O�aC2�,
which requires that jajC2 ø 1. This is the single approxi-
mation made. Numerical simulations discussed later on
verify that Eq. (8) indeed approximates the exact solution
of Eq. (7) to a high accuracy. In addition, we have
checked that substitution of (8) into the Lagrangian (5)
and varying the resulting expression with respect to
the parameters a and C yields zero. This “variational
approach” is commonly used to obtain an approximate
“ansatz” solution to a set of partial differential equations
in Lagrangian representation [18]. Equations (8) represent
a light bullet, which decays in both space and time and
is stable for all values of z. The latter follows directly
from (8a) and also from the Vakhitov-Kolokolov stability
criterion [19].
Figures 1–3 show the electric field and polarization,
generated by direct numerical simulation of the 2D SIT
equations (1) at the point z � 1000, using (8) as an initial
ansatz for z � 0. To a very good accuracy (with a de-
viation ,1%), they still coincide with the initial configu-
ration and analytic prediction (8). The electric field has a
typical shape of a 2D LB, localized in time and the trans-
verse coordinate x, with an amplitude 2a and a nearly
sech-form cross section in a plane in which two of the
three coordinates t, z, and x are constant. The ratio C�a

determines how fast the field decays in the transverse di-
rection. For jC�aj ø 1 (then jCj , 1, as jajC2 ø 1),
we have a relatively rapid decay in t and slow falloff
in the x direction, as is seen in Fig. 1. In the opposite
case, jC�aj ¿ 1, the field decays more slowly in time and
faster in x. The polarization field has the shape of a double-
peaked bullet. Its cross section at constant x displays a
minimum at Qmin � 0, where jP �Qmin�j � 0, and maxima
at Q6 � 6arccosh�

p
2 �, where jP �Q6�j � 1. The field

and polarization decay in a similar way, which is a char-
acteristic property of SIT [14]. Also the inversion decays
both in time and in x, but to a value of 21 instead of zero,
corresponding to the atoms in the ground state at infinity.
A numerical calculation of the field area at x � 0 yieldsR`

2` dtjE �t, z, 0�j � 6.28 6 0.05 � 2p, irrespective of
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FIG. 1. The electric field in the 2D “light bullet,” jE j, as a
function of time t (in units of the input pulse duration tp)
and transverse coordinate x (in units of the effective absorption
length aeff) after propagating the distance z � 1000. Parameters
used correspond to a � 1, C � 0.1, and Q0 � 1000.

z. By analogy with the SG soliton, one might thus name
this a “2p bullet.”

We have also numerically obtained axisymmetric stable
LBs in a 3D SIT medium; see Fig. 4. The 3D medium is
described by Eqs. (1) with the first one replaced by

2i�Err 1 r21Er� 1 Ez 2 P � 0 , (9)

where r �
p

x2 1 y2 is the transverse radial coordinate.
Searching for an analytic 3D bullet solution in the trans-
verse plane proves to be difficult. However, in the limit
of either large or small r , an approximate analytic so-
lution may be found. For large r , it again takes the
form (8), but now with Q1 � at 2 z�a 1 Q0 1 Cr and
Q2 � at 2 z�a 1 Q0 2 Cr, where a, Q0, and C are
constants, jajC2 ø 1, and it is implied r ¿ 1�jCj. It is
in sufficiently good agreement (deviations ,5%) with re-
sults of simulation of the 3D equations, using this solution
as an initial ansatz. Comparison of Figs. 1 and 4 shows
that the 2D and 3D bullets have similar shapes, but the 3D
one decays faster in the radial direction for small r than
the 2D bullet in its transverse direction.

For constant t, the 2D and 3D bullets are localized in
both the propagation direction z and the transverse direc-
tion(s). One may also ask whether there exist SIT solitons
which are traveling (plane) waves in z and localized in x
(and y). Using a symmetry argument, it is straightforward
to prove that they do not exist. Starting from the SIT
equations (1) (in 2D, the 3D case can be considered
analogously) we adopt a plane-wave ansatz for E and
P , changing variables as follows: x !

p
k x (assuming

k . 0), E �t, z, x� ! E �t, x� exp�2ikz�, P �t, z, x� !
k21P �t, x� exp�2ikz�, and W�t, z, x� ! k21W�t, x�.
The equations for the real and imaginary parts of the field
then become

E2xx 2 E2 2 P1 � 0 , (10a)

E1xx 2 E1 1 P2 � 0 , (10b)

with the equations for Pt and Wt given by (7c)–(7e). Us-
ing the transformation �E1,P1� $ �E2,P2�, which leaves
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FIG. 2. Contour plot of Fig. 1 in the �t, x� plane. Regions
with lighter shading correspond to higher values of the electric
field. Note the different time scale than that of Fig. 1.

the last three equations invariant but changes the first two,
one immediately finds that (11) admits only the trivial so-
lution E1 � E2 � P1 � P2 � 0, W � 21.

The observation of light bullets in a SIT process requires
high input power of the incident pulse and high density of
the two-level atoms in the medium, in order to achieve
pulse durations short compared to decoherence and loss
times. These requirements are met, e.g., for alkali gas me-
dia, with typical atomic densities of �1011 atoms�cm3 and
relaxation times �50 ns [20], and for optical pulses gen-
erated by a laser with pulse duration tp , 0.1 ns. In order
to include transverse diffraction, the incident pulse should
be of uniform transverse intensity and satisfy aeffd2�l ,

1 [20], where l and d are its carrier wavelength and di-
ameter, respectively [20]. The parameter a in the solution
(8), which determines the amplitude of the bullet and its
decay in time, corresponds to a � kztpyp [13], with kz

the wave vector component along the propagation direc-
tion z and yp the velocity of the pulse in the medium, and
can thus be controlled by the incident pulse duration and
velocity. The parameter C � kxLx , where kx is the trans-
verse component of the wave vector and Lx is the spatial

FIG. 3. The polarization in the 2D “bullet,” jP j, as a function
of time t and transverse coordinate x. Parameters used are the
same as in Fig. 1.
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FIG. 4. The electric field in the 3D “light bullet,” jE j, as a
function of time t and transverse radial variable r after propa-
gating the distance z � 1000. Parameters used correspond to
a � 1, C � 0.1, and Q0 � 1000.

transverse width of the pulse, is also controlled by the char-
acteristics of the incident pulse and should satisfy the con-
dition kzk

2
xLzL2

x ø 1. For a homogeneous (atomic beam)
absorber, the effective absorption length aeff � 104 m21

and the Fresnel number F can range from 1 to 100 [20].
The bullets then decay on a time scale of t � 1 10tp �
10 ns and transverse length of x � 0.1 1 mm, which is
well within experimental reach.

In conclusion, we predict the existence of fully stable
light bullets in 2D and 3D self-induced transparency
media. The prediction is based on an approximate
analytical solution of the multidimensional SIT equations
and verified by direct numerical simulation of these
partial differential equations. Our results suggest an
experiment aimed at detection of this bullet in an SIT
medium and opens the road for analogous searches for
light bullets in other nonlinear optical processes, such
as, e.g., stimulated Raman scattering, which is analogous
to SIT.
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