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Finite Flux Solutions of the Quantum Boltzmann Equation and Semiconductor Lasers
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We propose and illustrate in the context of the semiconductor laser that, in nonequilibrium fermionic
systems with sources and sinks, the family of finite flux stationary solutions of the quantum Boltzmann
equation is central and more important then the zero flux Fermi-Dirac spectrum. We present the quantum
analog of the finite flux Kolmogorov spectra which are central to understanding nonequilibrium classical
systems such as high Reynolds number hydrodynamics and the wave turbulence encountered in water
waves, plasmas, and optics. In particular, we show how semiconductor laser efficiency can be improved
by maximizing the flux of carriers (electrons and holes) towards the lasing frequencies.

PACS numbers: 42.55.Px, 52.25.Dg
The main goal (and principal novel feature) of this
Letter is to point out the importance of a richer class
of stationary spectra of fermionic systems. Unlike the
Fermi-Dirac (FD) spectrum, which is a special case, these
spectra allow for a finite transport of carriers between
source energies at which the system is pumped and sink
energies at which the system loses particles and energy to
other states. Such finite flux distributions are the quantum
analog of the finite flux Kolmogorov spectra of classical
wave turbulence [1,2]. These exact solutions of the kinetic
equations describe how, for example, energy, momentum,
and particle number inserted by the wind into ocean
surface waves is transported by four wave resonances
(for wavelengths l . 2 cm, gravity waves dominate) and
three wave resonances (for l , 2 cm surface tension is
important) throughout the spectrum. Indeed such spectra
have been observed experimentally [3]. The inverse cas-
cade of predominantly particle number is responsible for
“old” waves, namely, the appearance of very long and fast
traveling waves which outrun the storm and which
are not directly driven by the wind but can only be
indirectly generated by nonlinear processes. We sug-
gest the same scenario is also vital to understanding
the behavior of the quantum fermionic systems. We
illustrate the idea in the context of the semiconductor
laser (ubiquitous and advantageous in a wide range of
applications) and demonstrate how, by using finite flux
solutions, the laser output can be enhanced. This means
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that the optical properties of a semiconductor material
can be effectively altered without actually changing the
material itself.

For the most part the semiconductor laser operates in
a manner similar to the “textbook” two-level laser. Op-
tical feedback is organized by a cavity and the coherent
light output is generated by in-phase transitions of an elec-
tron from a higher to lower energy state. In semicon-
ductors, the lower state is a valence band, from which
electrons are excited by pumping into a conduction band,
leaving behind positively charged holes with opposite mo-
menta and spins. But they also differ from two-level lasers.
First, since light emission is a recombination process, there
must be both an electron and a hole at the same absolute
momentum and spin values. Second, there is a contin-
uum of transition energies parametrized by the electron
momentum k and the laser output is a weighted sum
of contributions from polarizations corresponding to each
momentum value. (Spin is included as part of the mo-
mentum vector.) In this regard, the semiconductor laser
resembles an inhomogeneosly broadened two-level laser.
Third, and most important of all, electrons and holes in-
teract with each other via screened Coulomb forces [4].
This leads to a mechanism for the redistribution of car-
riers between different momentum states, a process well
described by coupled quantum Boltzmann or kinetic equa-
tions (QKE). The electron and hole probability densities
n2
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In (1), Tkk1,k2k3 is the coupling coefficient due to
Coulomb forces and is proportional to 1	�k2 1 k2�, with
k being the inverse screening length. The kinetic energies

are h̄v
2
k �

h̄2k2

2m2 , h̄v
1
k �

h̄2k2

2m1 with k � jkj, and m2 and
m1 are the electron and hole masses, respectively. For
electric field pulses exceeding 1 ps the carrier redistribu-
tion is the fastest process (
100 fs). Therefore, carriers
relax adiabatically to attracting manifolds ns

0k which
are stable stationary solutions of the QKE consistent
© 2000 The American Physical Society



VOLUME 84, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 28 FEBRUARY 2000
with the presence of sources (pumping) and sinks (laser
output at lower momenta and dissipation via nonradiative
recombination). It is commonly assumed [4,5] that this
equilibrium state corresponds to the thermodynamic
equilibrium of fermion gases, which is described by a FD
distribution. However, because of the presence of sources
and sinks, a semiconductor laser is far from equilibrium.
In the case where the sources and sinks are located at
different parts of the momentum spectrum, carriers and
energy flow between them. But the FD solutions do
not capture the relevant physics because they carry no
flux. Whereas it has been appreciated by several authors
(e.g., Jahnke and Koch [6]) that a finite flux of carriers is
essential to compensate for the action of a sink (e.g., hole
burning in semiconductor lasers), it has not been generally
recognized that there are exact stationary solutions of the
QKE which describe the constant flux of carriers between
isolated sources and sinks. We will now demonstrate,
in the semiconductor laser context, that such solutions
are not only relevant but are realized and can be used to
enhance the laser output.

Assuming isotropy, the most general steady state solu-
tions of the QKE (1) belong to a six parameter family. The
six parameters are the total numbers of electrons and holes
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(where V0 is the surface area of a d-dimensional unit
sphere), the total energy
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and the three fluxes Q2, Q1, and P of the conserved
densities N2

v , N1
v , and Ev . It is convenient to write (1) in

conservation law form

≠Ns
v

≠t
�

≠Qs

≠v
,

≠Ev

≠t
� 2

≠P
≠v

, (2)

where Qs (P) is taken positive when the flux of Ns
v

(Ev) is towards lower (higher) energies. Stationary so-
lutions occur when Qs and P are constants. The FD states
�ns

k�21 � exp� h̄
T � vm

ms 2 ms�� 1 1, belong to a special zero
flux three parameter submanifold of solutions for which
Qs � P � 0. Here T can be interpreted as the common
electron and hole temperature, m2 and m1 as chemical
potentials. FD states with zero flux are most relevant in
situations where the damping and pumping are broad band
and locally in balance in v space.

But broad band pumping, and the FD distributions
generated by it, may be inefficient. Observe from Fig. 1(a)
that at room temperatures and typical operating conditions,
the FD distributions are much broader than the gain band
for lasing and therefore much energy is used in exciting
transitions at momenta which, because there are no fluxes,
do not directly contribute to lasing. Therefore, we are led
to investigate what happens if, instead of pumping broadly,
we pump the semiconductor in a relatively narrow spectral
region around an energy value h̄v0 that is greater than the
lasing energy h̄vL [see Fig. 1(b)]. Such local pumping is
possible through optical pumping [7] or through resonant
tunneling of electrons through multiple quantum well
structures [8]. In this case, a significant portion of carriers
and their associated energies will flow back from the
source (h̄v0) to sink (lasing at h̄vL) energies and thereby
involve electrons and holes at all momenta and energies in
lasing. At the same time, and because of the conservation
of carriers and energy, some carriers will flow to higher
energy (h̄vR) values and their energies will be absorbed
at various energy levels h̄vR . h̄v0 due to many pro-
cesses, e.g., (i) absorption of the charge carriers with
high kinetic energies that leave the optically active region
and thus contribute to the electrical pumping current
without contributing to the light amplification; (ii) nonra-
diative recombination of electron-hole pairs mediated by

FIG. 1. (a) Stationary Fermi-Dirac electron and hole distribu-
tions n2

v , n1
v , the inversion n2

v 1 n1
v 2 1, and gain

p
v �n2

v 1
n1

v 2 1� for the broadly pumped semiconductor laser. (b) Sta-
tionary (finite flux) distributions for the narrow band pumping
case. Lasing occurs only over energies where the inversion is
positive. Note the effect of the finite flux is to compress the
original FD distribution.
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impurities, dislocations, and interface roughness; (iii)
Auger processes.

In the remainder of this Letter, we provide concrete ev-
idence to support our idea. We numerically solve both
the QKE (1) and the single mode semiconductor laser
Maxwell-Bloch equations in the free carrier limit for the
electric field envelope e�t�, polarization envelope pv and
electron and hole distributions n2

v , n1
v [4,9]:
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Here V is a sample volume and we use typical semiconduc-
tor laser parameters suggested in [4]. V � 1440 meV	h̄
is the cavity frequency. The electric field damping gE

equals 6 3 1010 s21, the polarization decay (dephasing)
gP � 1013 s21, e0 is the permittivity of free space, dv is
the dipole matrix element dv�0	�1 1 ek	egap�, dv�0 �
3 3 10210 m 3 the electron charge, and the nonradiative
carrier damping gv equals 1010 s21. In (3), Ls

v is the
pumping due to the injection current (taken to be between
0.001 and 0.01 ps21), 1 2 ns

v is the Pauli blocking fac-
tor (because of the Pauli exclusion principle, ns

v cannot be
pumped over unity), and h̄ṽ � egap 1 ee,k 1 eh,k . We
further assume that all fields are isotropic and make a trans-
formation from k (� jkj) to v via the dispersion relation
h̄v�k� � h̄2k2	�2m� and define the carrier density ns

v as
ns�k�v��. The collision terms in (3) are given in (1) and
approximated by the differential approximation [1,9–11].
It is equivalent to the assumption that the spectral transfer
of carriers is very local in v space. The differential ap-
proximation reads
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where I1, I2 are semiconductor relaxation time con-
stants [9] and g equals unity for semiconductors. The
fluxes are given by Qs � 2msm21 ≠Ks

≠v 2 smsm21J
and P � 2egapQ2 1 h̄�v ≠
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difference between the local inverse temperatures
�T2�21�v� 2 �T1�21�v� (for FD distributions, these are
1896
constant and equal) and thus the role of the cross term
is to equalize electron and hole temperatures. We tested
the validity of the model and of our numerical model by
simulating the broad band pumping and reproducing the
expected (but slightly modified due to hole burning) FD
carrier distribution and laser turn-on and output character-
istics. Note that even for the broad band pumping case,
there is some flux of carriers across the spectrum. Indeed,
the maximum of the pumping Ls

v�1 2 ns
v� is located

at the middle part of the spectrum, see Fig. 1(a). The
maximum of the carrier absorption is located at small v.
Therefore one unavoidably has a flux of carriers across
the spectrum.

We also observed, consistent with theoretical arguments
one can make from (4) [9], that the net effect of the positive
finite fluxes is to compress the FD spectra to smaller v val-
ues. Such a compression, which is particularly strong for
the electron distribution, can be interpreted as an effective
temperature and chemical potential decrease. Therefore fi-
nite fluxes effectively increase inversion in the lasing part
of the spectrum. In addition, the operation of a semicon-
ductor laser may be optimized by choosing the pumping
energy h̄v0 to (i) make h̄v0 big enough to minimize Pauli
blocking, because electrons are best pumped where n2

v is
small, (ii) to make h̄v0 small enough (closer to the las-
ing energy h̄vL) to increases the flux of carriers towards
the lasing energy. The flux formulas are given in the next
paragraph.

In the numerical experiments, we solve (3) for t $ 0
on v1 # v # v0 with v1 just less than vL, the
lasing frequency. The boundary conditions and pump-
ing rates are (a) broad band case: Q1 � Q2 � 0 at
v � v1, v0, Lv � FD, typical pump profile; (b) narrow
band case: Q1 � Q2 � P � 0 at v � v1, Q1 �
Q2 � QL, P � 2�egap 1 h̄vL�QL, v � v0; Ls

v � 0.
In both cases the background dissipation gsns

v is the
same. QL is calculated as follows. Consider Fig. 2.
From the conservation of electrons, holes and total
energy, the assumptions that PR � 2vR�Q1

R 1 Q2
R �,

PL � 2vL�Q1
L 1 Q2

L � (namely, that both carriers and
energy are absorbed by the dissipation and laser states, re-
spectively) and charge neutrality Q1

L � Q2
L , we find after

a little calculation that QL � Q0�vR 2 v0�	�vR 2 vL�,
2PL

2P0
�

egap1 h̄vL

egap1 h̄v0

vR2v0

vR2vL

 vR2v0

vR2vL
since egap 
 1400,

h̄vL 
 40, and h̄v0 
 200 meV. To make the com-
parison with broad band pumping, we choose Q0 �R

Lv�1 2 n2
v � dk

dv dv such that the net particle and en-
ergy input rates are the same (energy 
 egap 3 particle
number). Because of Pauli blocking, the absorption of
power for the pump may be slower in the broad band case
than in the narrow band case.

In Fig. 3 we present the output power as a function of
the pumping strength. We observe that the output power
is consistently higher for narrow band pumping than for
broad band pumping, especially for weak pumping. The
lasing threshold value is less for narrow band pumping.
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FIG. 2. This picture explains the setup for input-output fluxes.
Carriers (electrons and holes) and energy are added at v0 with
rates Qs

0, s � 1, 2 and P0. Energy and some carriers are
dissipated at vR . v0 (an idealization) and are absorbed by
the laser at vL. Finite flux stationary solutions are realized in
the windows �vL, v0� and �v0, vR� although in practice there
will be some losses in both of these regions. The electron and
hole fluxes to the left (right) are Q2

L , Q1
L (2Q2

R , 2Q1
R ). The

rate of energy flowing to the left (right) is 2PL (PR). Note that
fluxes are defined so that Qs

L . 0, s � 1, 2, Qs
R , 0, PL , 0,

and PR . 0.

The distribution functions are more compressed towards
lower energies for narrow band pumping than they are for
broad band pumping because of the higher leftward fluxes
associated with the former. The results for different mass
ratios m1 � m2, m1 � 2m2 are similar.

In this Letter, we have shown that the QKE has a new
and richer class of steady state solutions than the FD dis-
tribution. These new solutions generalize FD to include
finite fluxes of the conserved quantities. We demonstrated
how these finite flux solutions of the QKE can be used
in the semiconductor laser context and, in particular, how
the finite fluxes of carriers and energy can be exploited to
give improved laser efficiency. But semiconductor lasers
are just one particular example. There is a huge num-
ber of other potential applications of these spectra in sit-
uations where the system is driven far from equilibrium
by the presence of sources and sinks operating at differ-
ent energies. Two other examples: the growth of (Bose)
condensates in superfluids is a direct consequence of an

FIG. 3. The output power (in arbitrary units) as a function of
pumping strength for narrow band and broad band pumping for
m1 � 6m2. The narrow band output power is shown by large
circles; the broad band output power is shown by small circles.
inverse cascade of particles; likewise, the onset of intermit-
tency in (classical) optical waves of diffraction in nonlinear
media where the refractive index increases with intensity
is a result of filaments triggered by instabilities of long
waves which in turn are driven by an inverse cascade of
particles [10]. We point out also that optoelectronics is a
fast growing field and the idea of effectively changing op-
tical properties without changing the materials themselves
is certainly worth more attention.
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