
VOLUME 84, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 28 FEBRUARY 2000

1890
Prediction of Spatiotemporal Time Series Based on Reconstructed Local States
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Spatiotemporal time series are analyzed and predicted using reconstructed local states. As numerical
examples the evolution of a Kuramoto-Sivashinsky equation and a coupled map lattice are predicted from
previously sampled data.
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The starting points for most analysis methods used in
nonlinear time series analysis are measurements of a single
observable of the system of interest [1]. Many interesting
dynamical systems, however, are spatially extended and
thus any description using only a few local or global ob-
servables may be incomplete. On the other hand, technical
devices for recording, storing, and analyzing sufficiently
long spatiotemporal time series (STTS) are widely avail-
able now. We therefore address in this Letter the analysis
of (large) data sets from spatially extended systems using
an approach for local state space reconstructions.

Let �sn� be the temporal sequence of spatial pat-
terns (snapshots) of the spatiotemporal evolution with
n � 1, . . . , N . Each pattern sn consists of M elements
(pixels) and is therefore represented as an M dimensional
vector with elements sn

m �m � 1, . . . , M�. Most of the
techniques applied so far to STTS are based on decompo-
sitions into spatial modes that constitute orthogonal bases
in a high dimensional vector space. Examples for such
basic modes are the well-known Fourier modes, wavelets,
or bases that are computed from the data, for example, by
means of a Karhunen-Loève transformation (KLT) (also
called proper orthogonal decomposition, singular value
decomposition, empirical orthogonal eigenfunctions) [2].
The STTS �sn� is projected onto these spatial modes and
the resulting projection coefficients contain all essential
information about the dynamics. In particular, for the
KLT very often only a few coefficients are significantly
different from zero and therefore the underlying process
can be described in a low dimensional subspace (see
Ref. [3] for a successful application of this approach).
However, not always can a linear decomposition into
basic modes yield a low dimensional description of the
data, even in cases where the STTS is governed by a low
dimensional attractor [4]. Modeling a STTS can also be
viewed as a system identification task and only recently
a promising approach for extracting partial differential
equations (PDEs) from data has been presented by Voss
et al. [5].

An alternative to decomposition into global linear modes
or identifying global nonlinear models is the construction
of local models that can be used for describing spatially
extended systems whose dynamics is governed by local
(inter)actions.
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In order to explain the main idea as clearly as possible
we assume in the following that the local dynamics is
the same at different points in space (except for boundary
effects). This assumption of homogeneity is of course not
fulfilled by typical real world experimental systems but it
may be viewed as a good approximation for many cases.
A generalization for nonhomogeneous systems is possible
and will be discussed briefly in the conclusion.

As a prerequisite we assume that the (local) state of
the system in a small region of space may be represented
by a vector x. This reconstruction of a local state space
can be done in different ways and the basic idea was (to
our knowledge) suggested for the first time by Kaneko
in Ref. [6]. Later Rubin [7] used a similar approach for
characterizing dynamic and static patterns, and recently
Orstavik and Stark [8] used spatiotemporal embedding
techniques for cross prediction of coupled map lattices.
These authors considered the local spatial region of in-
terest as a low dimensional system that interacts with the
global lattice via its boundaries. From this point of view
the high dimensional global system is viewed as a stochas-
tic forcing of the local low dimensional system and one can
expect satisfying results (e.g., small prediction errors) only
if the coupling and the influence of the stochastic compo-
nents are weak. In contrast to this interpretation we shall
in the following assume that a local state exists in a unique
and deterministic sense that allows in principle exact pre-
dictions (without stochastic components). This conjecture
is motivated by the case of coupled map lattices where it
can easily be verified. Numerical simulations with cou-
pled oscillators and PDEs show, however, that it seems to
be correct also for other classes of systems. We want to
stress that the latter is a necessary condition for the recon-
struction techniques to be useful in time series analysis of
real world data, because as soon as the local states are suc-
cessfully (re)constructed they can be used for subsequent
analysis or, as in the example given below, for predicting
the underlying dynamics.

In the following we will discuss only the case of a one
dimensional spatial pattern. Generalizations for higher di-
mensional cases are straightforward.

Reconstruction of local states. —The entire STTS
may be represented by a N 3 M matrix S as shown in
Fig. 1. The state of the system at position m and time n is
© 2000 The American Physical Society
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FIG. 1. Local reconstruction of states from regions of the spa-
tiotemporal time series S � �sn

m�n�1,...,N
m�1,...,M and prediction of the

future value of the center element sn1t
m . The constants c, 2c, . . .

on the right-hand side indicate the extension of the STTS be-
yond its boundary.

reconstructed in analogy to the delay embedding of the
scalar time series [9]. Here we use the center element sn

m,
some of its neighbors, and the corresponding values in the
past to construct the state vector

xn
m � �sn

m2IK , . . . , sn
m, . . . , sn

m1IK , . . . ,

sn2JL
m2IK , . . . , sn2JL

m , . . . , sn2JL
m1IK � , (1)

where I is the number of spatial neighbors, J is the number
of temporal neighbors (in the past), and K is the spatial
shift which has a similar meaning as the time delay L (time
lag) known from the delay embedding of the scalar time
series. This construction is visualized in Fig. 1 for I � 1,
J � 3, K � 2, and L � 2. The dimension d of the state
vector xn

m [ Rd is given by d � �J 1 1� �1 1 2I�.
Boundary conditions.—Two boundaries have to be

taken into account: (i) the boundary of the region from
which data have been collected (or in other words, the
boundary of the STTS) and (ii) the physical boundary
of the system under investigation that may influence the
dynamics close to that boundary. Because of the boundary
of the STTS, components of the local state vector xn

m in
(1) are “missing” when trying to construct states close
to this boundary. This problem can be overcome by
extending the STTS in its spatial direction with numbers
2c, 22c, 23c, . . . to the left and c, 2c, 3c, . . . to the right
as indicated in Fig. 1. The parameter c has to be chosen
larger than the largest value of the STTS. Using this
construction all states close to the boundary of the STTS
are located in different subspaces of the reconstruction
space Rd and can thus be treated separately by subsequent
algorithms. The effective dimension of the reconstructed
boundary states is lower than d. Therefore, in principle
different values of the reconstruction parameters I , J,
K , and L could (and should) be used for the boundary
to improve the reconstruction (and the results of any
subsequent application of it). Physical boundary effects
of the underlying system can be taken into account using
a penalty function

w�x̃� � ax̃b (2)

with 21 # x̃ # 1 being a normalized spatial coordinate
(running from the left to the right boundary) and a and b
are some free parameters. The basic idea of this approach
is that states with a similar location with respect to the
boundaries are governed by a similar dynamics and the
additional quantity w�x� provides this information about
the dynamics for subsequent analysis and modeling. In
this way one may also take into account inhomogeneous
dynamics that changes not only near the boundaries but
also in the interior of the spatial domain.

Nonlinear prediction.—As an application of the local
state reconstruction we consider here the prediction of the
future value of the central element sn1t

m “in front” of the
reconstruction region (see Fig. 1) where t gives the pre-
diction time interval. The states are implemented using
the above introduced formal extension of the STTS near
boundaries. Then a training set of states A � �xn

m� is
derived from Ntrain successive samples sn of the STTS.
For these states the preimage-image relation xn

m � sn1t
m

is known and is assumed to represent a nonlinear map
f: Rd ! R. In order to determine the future value sn1t

m
of an element sn

m of the STTS the corresponding state xn
m

is reconstructed. Then the nearest neighbor xi
j of xn

m is
selected from the training set A. Using the indices �i, j�
of the nearest neighbor the underlying map f is locally ap-
proximated by the future value pn1t

m � si1t
j of si

j .
Of course, locally linear or nonlinear maps may also be

used to approximate the dynamics f. Furthermore, predic-
tions over longer periods of time (t . 1) can be computed
as a single large step or iteratively by concatenating steps
with t � 1.

Numerical examples.—We shall now present two nu-
merical examples in order to illustrate the above described
schemes for reconstructing local states and iterative pre-
diction, i.e., we used the predicted values pn11

m to replace
the original elements sn11

m after each step.
The first STTS is generated by a lattice of M � 100

coupled Hénon maps:

un11
m � 1 2 1.45

∑
1
2

un
m 1

un
m21 1 un

m11

4

∏2

1 0.3yn
m ,

(3)

yn11
m � un

m , (4)

with fixed boundary conditions un
1 � un

M � 0.5 and y
n
1 �

y
n
M � 0. Coupled map lattices are fundamental models for

spatiotemporal chaos and structure formation [10]. They
are discrete in space and time with continuous variables
and correspond exactly to the structure of our prediction
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ansatz. Therefore, they are ideal candidates for motivating,
illustrating, and testing the reconstruction and prediction
methods based on local states. For this example, the local
states are reconstructed using I � J � K � L � 1 and
states close to the boundary are (spatially) extended by
constant values with c � 20. The prediction is performed
iteratively (t � 1) based on a training set of length N �
100. The parameters of the penalty function (2) equal a �
1 � b and the quantity w is included in the state vectors
as an additional coordinate in order to bias the selection of
nearest neighbors with similar distances to the boundary.
Figure 2a shows the spatiotemporal evolution of the STTS
which is to predicted, Fig. 2b the result of the prediction,
and Fig. 2c the prediction error. Even in spatial regions
with complex dynamics prediction is possible over several
time steps although a training set of only 100 iterations
has been used and the underlying dynamics is very high
dimensional. As can be seen, stable (i.e., almost periodic)
local patterns occur that seem to prevent the propagation
of (small) errors that are amplified in other neighboring
areas. In this sense the predictability of a spatiotemporal
data set can be very different depending on the formation
of structures [10].

The main reason for the good predictability of the data
from the coupled Hénon maps is the fact that for this ex-
ample the structure of the prediction scheme coincides very
well with the structure of the equations used for generat-
ing the STTS. That this is not a necessary condition shows
our second example where the STTS is generated using the
Kuramoto-Sivashinsky (KS) equation [11,12]

FIG. 2. Spatiotemporal time series generated by the Hénon
map lattice (3). Values of the variable un

m are plotted gray scaled
vs space m and time n. (a) Original time series to be predicted
(not included in the training set). (b) Predicted time series.
(c) Difference between the original time series (a) and the pre-
dicted data (b).
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in the interval �0, L� with u � ux � 0 at the boundaries
x � 0 and x � L � 200. The spatiotemporal dynamics
of this system is governed by a hyperchaotic attractor with
a Lyapunov dimension of DL � 43. For predicting the dy-
namics of this PDE, states close to boundaries have been
extended using c � 20 and neighbors are selected using
the penalty function (2) with a � 1 and b � 5. The pre-
diction is again performed iteratively. Figure 3a shows the
spatiotemporal evolution of the KS equation in the time
interval that is used as a training set for the prediction of
the test data given in Fig. 3b. Figure 3c shows the results
of a iterative prediction (t � 1) based on a reconstruction
of local states with I � 9, K � 1, J � 0, and L � 1. As
can be seen in Figs. 3b and 3c the essential features of the
time evolution are correctly predicted including the split-
ting and merging of structures.

Similar to the case of delay embedding of scalar time
series [1] the choice of proper embedding parameters is
crucial for successful applications. Practically one may
proceed in two steps. First the values for the spatial shift
K and the temporal delay L are estimated using the (av-
eraged) mutual information H [1] of spatial or temporal
neighbors in the STTS as a function of K or L, respectively,
in order to minimize the redundancy of the components
of the local state vectors. For the data from the coupled
Hénon maps redundancy of spatial and temporal neighbors
decayed sufficiently already for K � 1 and L � 1, respec-
tively. In the case of the Kuramoto-Sivashinsky data the
H-K curve possesses a local minimum at K � 4 whereas
the H-L curve has no pronounced minimum but decays

FIG. 3. Spatiotemporal time series generated by the Kuramoto-
Sivashinsky equation (5). Values of the variable u�x, t� are
plotted gray scaled vs space x and time t. (a) Training set.
(b) Original time series to be predicted. (c) Predicted time series.
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sufficiently for L � 1, indicating a low redundancy of tem-
poral neighbors for this value of the lag. These values
for K and L may be used then to determine the necessary
number of spatial I and temporal J neighbors (i.e., the
dimension) of the reconstruction by increasing I and J un-
til the prediction error decreases significantly. Practically,
however, values of K and L larger than 1 may lead to
decoupled dynamics of different subgrids and mesh-drift
instabilities known from numerical schemes for solving
PDEs [13]. To avoid this instability one may (i) add a
numerical viscosity term to the prediction scheme [13],
(ii) use an overlap-add approach for forecasting [14], or
(iii) construct local state vectors by subjecting local re-
gions in space-time to Karhunen-Loève transformations
with subsequent projections onto a small number of domi-
nating modes [15]. Since all these “cures” have particu-
lar drawbacks we suggest to sample the local states with
K � 1 � L and then use a nearest-neighbor search algo-
rithm in the resulting high dimensional state space Rd that
exploits the (expected) low dimensionality of the set of
state vectors [16].

The numerical examples show that the local reconstruc-
tion of states is a powerful method for predicting spa-
tiotemporal time series. It may also serve as a starting
point for deriving a mathematical model of the underly-
ing dynamics and subsequent bifurcation analysis. The
schemes discussed in this paper may be generalized in
different directions. The dimension of the reconstructed
states can be reduced if the STTS stems from a dynam-
ical system that possesses additional spatial symmetries
that can be exploited when constructing the state vectors.
For the one dimensional case we may, for example, as-
sume that the system is invariant with respect to spatial
reflection. If the process generating the STTS is not spa-
tially homogeneous one may just add to the dimension d of
the reconstruction space the number dS of spatial dimen-
sions of the problem (i.e., dS � 1, 2, or 3) and work then
in the extended d 1 dS dimensional space [i.e., using the
penalty function (2) with a � 1 � b]. Of course, in that
case longer training sets will be necessary in general. The
reconstruction and prediction methods also worked well
for data that were not sampled simultaneously but (slowly)
scanned spatially as is the case in many experimental mea-
surements of extended systems. Another modification of
the scheme proposed concerns the selection of spatiotem-
poral neighbors of the center element sn

m for reconstructing
the local state xn

m. At this point one may take into account
the fact that any physical information spreads with some
maximum speed. Instead of using a rectangular region of
the matrix S a triangle (i.e., a “light cone”) may be more
efficient for reconstructing local states. This feature of lo-
cality may also be viewed as a motivation for the concept
of local states and seems to be important for a rigorous
mathematical justification of the presented method.
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