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Partial Dynamical Symmetry in a Fermion System
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The relevance of the partial dynamical symmetry concept for an interacting fermion system is demon-
strated. Hamiltonians with partial SU(3) symmetry are presented in the framework of the symplectic shell
model of nuclei and shown to be closely related to the quadrupole-quadrupole interaction. Implications
are discussed for the deformed light nucleus 20Ne.
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Symmetries play an important role in dynamical sys-
tems. They provide labels for the classification of states,
determine selection rules, and simplify the relevant Ham-
iltonian matrices. Algebraic, symmetry-based models of-
fer significant simplifications when the Hamiltonian under
consideration commutes with all the generators of a par-
ticular group (“exact symmetry”) or when it is written in
terms of the Casimir operators of a chain of nested groups
(“dynamical symmetry”) [1]. In both cases, basis states be-
longing to inequivalent irreducible representations (irreps)
of the relevant groups do not mix, the Hamiltonian matrix
has block structure, and all properties of the system can
be expressed in closed form. An exact or dynamical sym-
metry not only facilitates the numerical treatment of the
Hamiltonian but also its interpretation, and thus provides
considerable insight into the physics of a given system.

Naturally, the application of exact or dynamical symme-
tries to realistic situations has its limitations. Usually, the
assumed symmetry is only approximately fulfilled, and im-
posing certain symmetry requirements on the Hamiltonian
might result in constraints which are too severe and incom-
patible with experimentally observed features of the sys-
tem. The standard approach in such situations is to break
the symmetry. Partial dynamical symmetry (PDS) [2] cor-
responds to a particular symmetry-breaking for which the
Hamiltonian is not invariant under the symmetry group
and, hence, various irreps are mixed in its eigenstates; yet
it possesses a subset of “special” solvable states which re-
spect the symmetry. This new scheme has recently been
introduced in bosonic systems and has been applied to the
spectroscopy of deformed nuclei [3] and to the study of
mixed systems with coexisting regularity and chaos [4]. It
is the purpose of this Letter to demonstrate the relevance
of the partial dynamical symmetry concept to fermion sys-
tems. More specifically, in the framework of the symplec-
tic shell model of nuclei [5], we will prove the existence
of a family of fermionic Hamiltonians with partial SU(3)
symmetry. The PDS Hamiltonians are rotationally invari-
ant and closely related to the quadrupole-quadrupole in-
teraction; hence, our study will shed new light on this
important interaction. We will compare the spectra and
eigenstates of the quadrupole-quadrupole and PDS Hamil-
tonians for the deformed light nucleus 20Ne.
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The quadrupole-quadrupole interaction is an important
ingredient in models that aim at reproducing quadrupole
collective properties of nuclei. A model which is able to
fully accommodate the action of the collective quadrupole

operator, Q2m �
q

16p

5

P
s r2

s Y2m�r̂s�, is the symplectic
shell model (SSM), an algebraic scheme which respects
the Pauli exclusion principle [5]. In the SSM, this operator
takes the form Q2m �

p
3 �Ĉ�11�

2m 1 Â
�20�
2m 1 B̂

�02�
2m �, where

Â
�20�
lm , B̂

�02�
lm , and Ĉ

�11�
lm are symplectic generators with good

SU(3) [superscript �l, m�] and SO(3) [subscript l, m]
tensorial properties. The Â

�20�
lm (B̂

�02�
lm ), l � 0 or 2, create

(annihilate) 2h̄v excitations in the system. The Ĉ
�11�
lm ,

l � 1 or 2, generate a SU(3) subgroup and act only within
one harmonic oscillator (h.o.) shell (

p
3 Ĉ

�11�
2m � QE

2m, the
symmetrized quadrupole operator of Elliott, which does
not couple different h.o. shells [6], and Ĉ

�11�
1m � L̂m,

the orbital angular momentum operator). A fermion
realization of these generators is given in [7].

A basis for the symplectic model is generated by ap-
plying symmetrically coupled products of the 2h̄v raising
operator Â�20� with itself to the usual 0h̄v many-particle
shell-model states. Each 0h̄v starting configura-
tion is characterized by the distribution of oscillator
quanta into the three Cartesian directions, �s1, s2, s3�
(s1 $ s2 $ s3), or, equivalently, by its U�1� 3 SU�3�
quantum numbers Ns�ls , ms�. Here ls � s1 2 s2,
ms � s2 2 s3 are the Elliott SU(3) labels, and Ns �
s1 1 s2 1 s3 is related to the eigenvalue of the os-
cillator number operator. The product of N�2 raising
operators Â�20� generates Nh̄v excitations for each
starting irrep Ns�ls , ms�. Each such product opera-
tor P N�ln ,mn�, labeled according to its SU(3) content,
�ln, mn�, is coupled with jNs�ls , ms�� to good SU(3)
symmetry r�l, m�, with r denoting the multiplicity of
the coupling �ln, mn� ≠ �ls , ms�. The quanta distri-
bution in the resulting state is given by �v1, v2, v3�,
with Ns 1 N � v1 1 v2 1 v3, v1 $ v2 $ v3, and
l � v1 2 v2, m � v2 2 v3. The basis state con-
struction is schematically illustrated in Fig. 1 for a
typical Elliott starting state with �ls , ms� � �l, 0�.
20Ne, for instance, has Ns � 48.5 (after removal of
the center-of-mass contribution) and �ls , ms� � �8, 0�
© 2000 The American Physical Society
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[5,8]. To complete the basis state labeling, additional
quantum numbers a � kLM are required, where L
denotes the angular momentum with projection M, and k

is a multiplicity index, which enumerates multiple occur-
rences of a particular L value in the SU(3) irrep �l, m�
from 1 to k

max
L �l, m� � ��l 1 m 1 2 2 L��2� 2 ��l 1

1 2 L��2� 2 ��m 1 1 2 L��2�, where [· · ·] is the great-
est non-negative integer function [9]. The group chain cor-
responding to this labeling scheme is Sp�6, R� . SU�3� .
SO�3� which defines a dynamical symmetry basis.

The quadrupole-quadrupole interaction connects
h.o. states differing in energy by 0h̄v, 62h̄v, and
64h̄v, and may be written as

Q2 ? Q2 � 9ĈSU3 2 3ĈSp6 1 Ĥ2
0 2 2Ĥ0 2 3L̂2 2 6Â0B̂0

1 �terms coupling different h.o. shells� , (1)

where ĈSU3 and ĈSp6 are the quadratic Casimir invariants
of SU(3) and Sp(6,R) with eigenvalues 2�l2 1 m2 1

lm 1 3l 1 3m��3 and 2�l2
s 1 m2

s 1 lsms 1 3ls 1

3ms��3 1 N2
s�3 2 4Ns , respectively. These operators,

as well as the h.o. Ĥ0 and L̂2 terms, are diagonal in the
dynamical symmetry basis. Unlike the Elliott quadrupole-
quadrupole interaction, QE

2 ? QE
2 � 6ĈSU3 2 3L̂2, the

Q2 ? Q2 interaction of Eq. (1) breaks SU(3) symmetry
within each h.o. shell since the term Â0B̂0 	 Â

�20�
0 B̂

�02�
0 �

��Â 3 B̂��00�
0 2

p
5 �Â 3 B̂��22�

0 ��
p

6 mixes different
SU(3) irreps. In order to study the action of Q2 ? Q2
within such a shell, we consider the following family of
Hamiltonians:

H�b0, b2� � b0Â0B̂0 1 b2Â2 ? B̂2

�
b2

18
�9ĈSU3 2 9ĈSp6 1 3Ĥ2

0 2 36Ĥ0�

1 �b0 2 b2�Â0B̂0 . (2)

For b0 � b2, one recovers the dynamical symmetry,
and, with the special choice b0 � 12, b2 � 18, one
obtains Q2 ? Q2 � H�b0 � 12, b2 � 18� 1 const�N� 2

3L̂2 1 terms coupling different shells, where const�N� is
constant for a given h.o. Nh̄v excitation.
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FIG. 1. Basis construction in the symplectic model. SU(3)-
coupled products of the raising operator Â�20� with itself act on an
Elliott starting state with �ls , ms� � �l, 0� (�s1, s2, s3 � s2�)
to generate symplectic 2h̄v, 4h̄v, . . . excitations. Also shown
are the SU(3) labels �l, m� and quanta distributions �v1, v2, v3�
for some excited states.
From Eq. (2) it follows that H�b0, b2� is not SU(3)
invariant. We will now show that H�b0, b2� exhibits
partial SU(3) symmetry. Specifically, we claim that,
among the eigenstates of H�b0, b2�, there exists a sub-
set of solvable pure-SU(3) states, the SU�3� . SO�3�
classification of which depends on both the Elliott la-
bels �ls , ms� of the starting state and the symplectic
excitation N . In general, we find that all L states in the
starting configuration (N � 0) are solvable with good
SU(3) symmetry �ls , ms�. For excited configurations
(N . 0 and even) we distinguish between two possible
cases: (a) ls . ms : the pure states belong to �l, m� �
�ls 2 N , ms 1 N� and have L � ms 1 N , ms 1 N 1

1, . . . , ls 2 N 1 1 with N � 2, 4, . . . subject to 2N #

�ls 2 ms 1 1�. (b) ls # ms: the special states belong
to �l, m� � �ls 1 N , ms� and have L � ls 1 N , ls 1

N 1 1, . . . , ls 1 N 1 ms with N � 2, 4, . . . .
To prove the claim, it suffices to show that B̂0 anni-

hilates the states in question. For N � 0 this follows
immediately from the fact that the 0h̄v starting configu-
ration is a Sp(6, R) lowest weight which, by definition,
is annihilated by the lowering operators of the Sp(6, R)
algebra. The latter include the generators B̂

�02�
lm . For

N . 0, let �s1, s2, s3� be the quanta distribution for
a 0h̄v state with ls . ms . Adding N quanta to the
2-direction yields a Nh̄v state with quanta distribution
�s1, s2 1 N , s3�, that is, �l, m� � �ls 2 N , ms 1 N�.
Acting with the rotational invariant B̂0 on such a state does
not affect the angular momentum, but removes two quanta
from the 2-direction, giving a �N 2 2�h̄v state with
�l0, m0� � �ls 2 N 1 2, ms 1 N 2 2�. (The symplec-
tic generator B̂0 cannot remove quanta from the other two
directions of this particular state, since this would yield a
state belonging to a different symplectic irrep.) Compar-
ing the number of L occurrences in �l, m� and �l0, m0�,
one finds that as long as ls 2 N 1 1 $ ms 1 N ,
DL�N� 	 k

max
L �l, m� 2 k

max
L �l0, m0� � 1 for L � ms 1

N , ms 1 N 1 1, . . . , ls 2 N 1 1, and DL�N� � 0
otherwise. When DL�N� � 1, a linear combination
jfL�N�� �

P
k ckjNh̄v�ls 2 N , ms 1 N�kLM� exists

such that B̂0jfL�N�� � 0, and thus our claim for family
(a) holds. The proof for family (b) can be carried out
analogously if one considers adding N quanta to the
1-direction of the starting irrep. In this case there is no
restriction on N; hence, family (b) is infinite.

The special states have well-defined symmetry
Sp�6, R� . SU�3� . SO�3� and are annihilated by
B̂0. This ensures that they are solvable eigenstates of
H�b0, b2� with eigenvalues E�N � 0� � 0, E�N� �
b2N�Ns 2 ls 1 ms 2 6 1 3N�2��3 for family (a),
and E�N� � b2N�Ns 1 2ls 1 ms 2 3 1 3N�2��3
for family (b). All 0h̄v states are unmixed and span
the entire �ls , ms� irrep. In contrast, for the excited
levels (N . 0), the pure states span only part of the
corresponding SU(3) irreps. There are other states at each
excited level which do not preserve the SU(3) symmetry
and therefore contain a mixture of SU(3) irreps. The
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partial SU(3) symmetry of H�b0, b2� is converted into
partial dynamical SU(3) symmetry by adding to it SO(3)
rotation terms which lead to L�L 1 1�-type splitting but
do not affect the wave functions. The solvable states then
form rotational bands and, since their wave functions are
known, one can evaluate the E2 rates between them [10].
It is of interest to note that both the fermion Hamiltonian
presented here and the boson Hamiltonian of [3] exhibit
partial SU(3) symmetry and involve a SU(3) tensor of the
form ��2, 0� 3 �0, 2�� �2, 2�L � 0.

To illustrate that the PDS Hamiltonians of Eq. (2) are
physically relevant, we compare the eigenstates of HPDS �
h�N� 1 jH�b0 � 12, b2 � 18� 1 g2L̂2 1 g4L̂4 to
those of the symplectic Hamiltonian HSp6 � Ĥ0 2 xQ2 ?

Q2 1 d2L̂2 1 d4L̂4. Here the function h�N� is simply
a constant for a given Nh̄v excitation and contains the
h.o. term Ĥ0. Least squares fits to measured energies and
B�E2� values of the ground band of 20Ne were carried out
for 2h̄v, 4h̄v, 6h̄v, and 8h̄v symplectic model spaces.
The resulting energies and transition rates converge to
values which agree with the data (Fig. 2 and Table I).
The parameters g2 and g4 in HPDS were determined by
the energy splitting between states of the ground band,
j was adjusted to reproduce the relative positions of
the resonance bandheads, and h�N� was fixed by the
energy difference �E�01

2 � 2 E�01
1 ��. Figure 2 and Table I

demonstrate the level of agreement between the PDS and
symplectic results.

An analysis of the structure of the ground and reso-
nance bands reveals the amount of mixing in the 8h̄v

symplectic (Q2 ? Q2) wave functions. Figure 3 shows the
decomposition for representative (21) states of the five
lowest rotational bands. Ground band (K � 01) states
are found to have a strong 0h̄v component ($64%), and
three of the four resonance bands are clearly dominated
($60%) by 2h̄v configurations. States of the first reso-
nance band (K � 02), however, contain significant con-
tributions from all but the highest Nh̄v excitations. The
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FIG. 2. Energy spectra for 20Ne. Comparison between ex-
perimental values (left), results from a symplectic 8h̄v cal-
culation (center), and a PDS calculation (right). The angular
momenta of the positive parity states in the rotational bands
are L � 0, 2, 4, . . . for K � 0 and L � K , K 1 1, K 1 2, . . .
otherwise.
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relative strengths of the SU(3) irreps within the 2h̄v space
are shown as well: states are found to be dominated by
one representation [(10,0) for the K � 02 band, (8, 1)
for K � 11, (6, 2)k � 2 for K � 21, and (6, 2)k � 1 for
K � 03, where k � 1 and 2 correspond here to Vergados
basis labels 0 and 2, respectively [11] ], while the other ir-
reps contribute only a few percent. Such trends are present
also in the more realistic symplectic calculations of [12].

The PDS Hamiltonian HPDS acts only within one
oscillator shell; hence, its eigenfunctions do not contain
admixtures from different Nh̄v configurations. As
expected, HPDS has families of pure SU(3) eigenstates
which can be organized into rotational bands. The ground
band belongs entirely to N � 0, �l, m� � �8, 0�, and all
states of the K � 21 band have quantum labels N � 2,
�l, m� � �6, 2�, k � 2. A comparison with the symplectic
case shows that the Nh̄v level to which a particular PDS
band belongs is also dominant in the corresponding sym-
plectic band. In addition, within this dominant excitation,
eigenstates of HPDS and HSp6 have similar SU(3) distri-
butions; in particular, both Hamiltonians favor the same
�l, m�k values. Significant differences in the structure
of the wave functions appear, however, for the K � 02
resonance band. In the 8h̄v symplectic calculation, this
band contains almost equal contributions from the 0h̄v,
2h̄v, and 4h̄v levels, with additional admixtures of 6h̄v

and 8h̄v configurations, while in the PDS calculation it
belongs entirely to the 2h̄v level. These structural differ-
ences are also evident in the interband transition rates, e.g.,
B�E2; K � 01, 21 ! K � 02, 01� � 2.93 �5.69� W.u.
and B�E2; K � 02, 21 ! K � 01, 01� � 5.84 �12.6�
W.u. in the 8h̄v (PDS) calculation, and reflect the action
of the intershell coupling terms in Eq. (1). Increasing
the strength x of Q2 ? Q2 in HSp6 will also spread the
other resonance bands over many Nh̄v excitations. The
K � 21 band (which is pure in the PDS scheme) is
found to resist this spreading more strongly than the
other resonances. For physically relevant values of x , the
low-lying bands have the structure shown in Fig. 3.

In summary, we have introduced a family of fermionic
Hamiltonians with partial SU(3) symmetry. Using the

TABLE I. B�E2� values (in Weisskopf units) for ground band
transitions in 20Ne. Compared are several symplectic calcu-
lations, PDS results, and experimental data [13]. The static
quadrupole moment of the 21

1 state is given in the last row.
PDS results are rescaled by an effective charge e� � 1.95 and
the symplectic calculations employ bare charges.

Model B�E2� [W.u.]Transition B�E2� [W.u.]
Ji ! Jf 2h̄v 4h̄v 6h̄v 8h̄v PDS Expt.

2 ! 0 14.0 18.7 19.1 19.3 20.3 20.3 6 1.0
4 ! 2 18.4 24.5 24.6 24.5 25.7 22.0 6 2.0
6 ! 4 17.1 22.3 21.5 20.9 21.8 20.0 6 3.0
8 ! 6 12.4 15.2 13.3 12.4 12.9 9.0 6 1.3

Q [eb] 20.14 20.16 20.16 20.16 20.17 20.23 6 0.03
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FIG. 3. Decomposition for calculated 21 states of 20Ne. Indi-
vidual contributions from the relevant SU(3) irreps at the 0h̄v
and 2h̄v levels are shown for both a symplectic 8h̄v calcula-
tion (denoted Q2 ? Q2) and a PDS calculation. In addition, the
total strengths contributed by the Nh̄v excitations for N . 2
are given for the symplectic case.

framework of the symplectic shell model, we have proven
that these Hamiltonians possess both mixed symmetry and
solvable pure-SU(3) rotational bands. For the deformed
light nucleus 20Ne, we have shown that various features of
the quadrupole-quadrupole interaction can be reproduced
with a particular parametrization of the PDS Hamiltonians.
For both the ground and the resonance bands, PDS eigen-
states were seen to approximately reproduce the structure
of the exact Q2 ? Q2 eigenstates within the 0h̄v and 2h̄v

spaces, respectively. In particular, for each pure state of
the PDS scheme we found a corresponding eigenstate of
the quadrupole-quadrupole interaction, which was domi-
nated by the same SU(3) irrep. Moreover, for reasonable
interaction parameters, each rotational band was primar-
ily located in one level of excitation, with the exception
of the lowest K � 02 resonance band, which was spread
over many Nh̄v excitations. Implications of the structural
differences between the various resonance bands for giant
monopole and quadrupole transitions remain to be investi-
gated. The occurrence of partial symmetries for fermions,
as shown in this Letter, and for bosons, as presented in pre-
vious literature [3], highlights their relevance to dynamical
systems and motivates their further study.
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