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Stable Monopole and Dyon Solutions in the Einstein-Yang-Mills Theory
in Asymptotically anti–de Sitter Space
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A continuum of new monopole and dyon solutions in the Einstein-Yang-Mills theory in asymptotically
anti–de Sitter space are found. They are regular everywhere and specified by their mass and their
non-Abelian electric and magnetic charges. A class of monopole solutions which have no node in
non-Abelian magnetic fields is shown to be stable against spherically symmetric linear perturbations.
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Soliton and black hole solutions to the Einstein-Yang-
Mills (EYM) equations have generated considerable inter-
est during the past decade [1–6]. In flat space there can be
no static soliton solution in the pure Yang-Mills theory [7].
Even unstable static solutions cannot exist. The presence
of gravity provides an attractive force which can bind non-
vanishing Yang-Mills fields together. Such static solutions
to the EYM equations have been found in asymptotically
Minkowski or de Sitter space. They are all purely mag-
netic. In asymptotically Minkowski space-time the elec-
tric components are forbidden in static solutions [8]. All
of these EYM solitons and black holes were shown to be
unstable, where the number of unstable modes is equal to
twice the number of times the magnetic component of the
gauge field crosses the axis [9].

If the space-time is modified to include the cosmological
constant, the no-go theorems [8] forbidding the electric
components of the gauge fields fail, thus, permitting dyon
solutions. We have found that in asymptotically de Sitter
space-time, a nonzero electric component to the gauge
fields causes

p
2g to diverge at the cosmological horizon,

thus excluding dyon solutions.
In this Letter, we present new monopole and dyon

solutions in asymptotically anti–de Sitter (AdS) space.
They are regular everywhere. In asymptotically AdS space
there are solutions with no cosmological horizon and
dyons solutions are allowed. Furthermore, we have found
a continuum of solutions where the gauge fields have
no nodes, corresponding to stable monopole and dyon
solutions.

AdS space has recently attracted huge interest.
The Banados-Teitelboim-Zanelli black holes in three-
dimensional AdS space provide valuable information
about black hole thermodynamics and quantum grav-
ity [10]. In four dimensions, linearly stable black
hole solutions have been found in asymptotically
AdS space [11]. The correspondence between four-
dimensional superconformal field theory and type IIB
string theory on AdS5 has been established [12]. In this
Letter we show that, even in a simple Einstein-Yang-Mills
system, stable monopole and dyon solutions exist in
four-dimensional asymptotically AdS space, which we
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believe leads to further understanding of the rich structure
of quantum field theory in AdS space as well as profound
implications to the evolution of the early universe.

We start with the most general expression for the spher-
ically symmetric SU�2� gauge field in the singular gauge
[13]:

A �
1
2e

�ut3dt 1 nt3dr 1 �wt1 1 w̃t2�du

1 �cotut3 1 wt2 2 w̃t1� sinudf� , (1)

where u, n, w, and w̃ depend on r and t. The regularity
at the origin imposes the boundary conditions u � n � 0
and w2 1 w̃2 � 1 at r � 0. Under a residual U�1� gauge
transformation S � eit3z�t,r��2, �u, n� ! �u 1 �z, n 1 z0�,
and w 1 iw̃ ! eiz�w 1 iw̃�. The spherically symmetric
metric is written as

ds2 � 2
Hdt2

p2 1
dr2

H
1 R2�du2 1 sin2udf2� , (2)

where H, p, and R are functions of t and r , in general.
We first look for static regular soliton solutions in the

n � 0 gauge. Since the Yang-Mills equations imply w̃ �
Cw, where C is some constant, another gauge transforma-
tion allows us to set C � 0, or w̃ � 0. Without loss of
generality one can choose w�0� � 1. u can be interpreted
as the electric part of the gauge fields and w as the mag-
netic part. The Schwarzshild gauge R � r is taken for the
metric. The coupled static EYM equations of motion areµ

H
p

w0

∂0
� 2

p
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u2w 2
w
p

�1 2 w2�
r2 , (3)

�r2pu0�0 �
2p
H

w2u , (4)

p0 � 2
2y

r
p

∑
�w0�2 1

u2w2p2

H2

∏
, (5)

m0 � y

∑
�w2 2 1�2

2r2 1
1
2

r2p2�u0�2

1 H�w0�2 1
u2w2p2

H

∏
. (6)

Here H�r� � 1 2 2m�r��r 2 Lr2�3 and y � 4pG�e2.
L is the cosmological constant. We are looking for a
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solution which is regular everywhere and has finite
Arnowitt-Deser-Misner (ADM) mass m�`�.

The presence of the cosmological constant affects the
behavior of the soliton solutions significantly. For L �
0, both H and p approach a constant value as r ! `.
Consequently, w2 ! 1 from (3) and (6). For L fi 0, w
need not have an asymptotic value 61. It is known that
Eq. (4) implies the absence of solutions with u�r� fi 0
in the L � 0 case [8]. A similar argument applies to
the L . 0 case in which there appears a cosmological
horizon at r � rh; H�rh� � 0. At the horizon, either u or
w must vanish to have regular solutions to Eqs. (3)–(6).
Equation (4) implies that u�r� is either identically zero or
a monotonic function of r for r , rh. Hence, w�rh� � 0
and u�rh� fi 0 if u0�0� fi 0. However, Eq. (3) implies

Hw0

pw

Çrh

r1

� 2
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dr

Ω
H
p

µ
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w

∂2

1
pu2

H
1

�1 2 w2�
pr2

æ
,

(7)

provided that w�r� . 0 for r1 # r , rh. The right-hand
side (r.h.s.) of (7) diverges, whereas the left-hand side
(l.h.s.) remains finite if w�rh� � 0 and u�rh� fi 0. This
establishes that u�r� � 0 in the de Sitter space. All solu-
tions are purely magnetic. Suppose that 0 , w2 # 1 for
0 # r # rh and take r1 � 0 in (7). As w0�0� � 0, the
l.h.s. vanishes whereas the r.h.s. is negative definite. This
implies that w satisfying w2 # 1 for r # rh must vanish
somewhere between 0 and rh. It has been known that, in
all solutions in asymptotically de Sitter space, w�r� has at
least one node.

The situation is quite different in asymptotically AdS
space �L , 0�. H�r� is positive everywhere. All equa-
tions are consistently solved if u�r� � u0 1 �u1�r� 1 . . .
and w�r� � w0 1 �w1�r� 1 . . . for large r . There is no
restriction on the value of u0 or w0. Furthermore, w�r� can
be nodeless.

Solutions are classified by the ADM mass, M � m�`�,
and electric and magnetic charges, QE and QM . From the
Gauss flux theorem

µ QE

QM

∂
�

e
4p

Z
dSk

p
2g

µ Fk0

F̃k0

∂
(8)

are conserved, but are also gauge dependent. With the
ansatz in the singular gauge,

µ QE

QM

∂
� 6

µ u1p0

1 2 w2
0

∂
t3

2
, (9)

where p�r� � p0 1 �p1�r� 1 . . . , etc. If �u, w, m, p� is
a solution, then �2u, w, m, p� is also a solution. Dyon
solutions come in a pair with �6QE , QM , M�.

The solutions to Eqs. (3)–(6), for L , 0, are evaluated
numerically. The procedure is to solve these equations at
r � 0 in terms of two free adjustable parameters a and
1854
b and “shoot” for solutions with the desired asymptotical
behavior. The behavior of solutions near the origin are

w�r� � 1 2 br2, m�r� � y

µ
2b2 1

1
2

a2

∂
r3,

p�r� � 1 2 �4b2 1 a2�yr2, (10)

u�r� � ar 1
a
5

∑
22b 1

1
3

L 1 2y�a2 1 4b2�
∏
r3.

Purely magnetic solutions (monopoles) are found by
setting a � 0 �u � 0�. By varying the initial condition
parameter b, a continuum of monopole solutions were ob-
tained, which are similar to the black hole solutions found
in Ref. [11], but are regular in the entire space. w crosses
the axis an arbitrary number of times depending on the
value of the adjustable shooting parameter b. Typical so-
lutions are displayed in Fig. 1.

The behavior of m and p is similar to that of the asymp-
totically de Sitter solutions previously considered [5]. In
contrast, as shown in Fig. 1, there exist solutions where
w has no nodes. These solutions are of particular in-
terest because they are shown to be stable against linear
perturbations.

If the adjustable shooting parameter a is chosen to be
nonzero, we find dyon solutions. As shown in Fig. 1, the
electric component, u, of the YM fields starts at zero and
monotonically increases to some finite value. The behavior
of w, m, H, and p is similar to that in the monopole
solutions.

Again we find a continuum of solutions where w crosses
the axis an arbitrary number of times depending on a and
b. Similarly there exist solutions where w does not cross
the axis.

FIG. 1. Monopole and dyon solutions for L � 20.01 and
y � 1. Monopoles: �a, b� � �0, 0.001� and �0, 0.005�. �w, m�
at r � ` are �0.339, 0.034� and �20.878, 0.191�, respectively.
Dyons: �a, b� � �0.003, 0.001� and �0.002, 0.0005�. �w, u, m�
at r � ` are �0.031, 0.080, 0.099� and �0.421, 0.064, 0.056�,
respectively.
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FIG. 2. Dyon solution for L � 20.01, y � 1, a � 0.01, and
b � 0.69. b is close to the critical value bc � 0.7. H almost
hits the axis around r � 1.

Solutions are found for a continuous set of the parame-
ters a and b. This is in sharp contrast to the L $ 0 case,
in which only a discrete set of solutions is found. For some
values of a and b, solutions blow up, or the function H�r�
crosses the axis and becomes negative. One example of
solutions near the critical value [�a, b� � �0.01, 0.69�] is
displayed in Fig. 2. H�r� becomes very close to zero at
r � 1. It has �QE , QM , M� � �0.015, 0.998, 0.995�.

In Fig. 3, M is plotted as a function of QM for monopole
solutions. The behavior of the solutions near b � 0.7
needs more careful analysis, although we did find that,
when b . 0.7, all of the solutions appeared to have a
horizon.

We have found that dyon solutions cover a good portion
of the QE-QM plane. There are solutions with QM � 0
but QE fi 0, which has nonvanishing w�r�. In the shoot-
ing parameter space �a, b�, these solutions do not ex-
actly (but almost) correspond to a universal value for b �
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FIG. 3. Mass M is plotted as a function of magnetic charge
QM for monopole solutions. The number of nodes, n, in w�r�
is also marked.
0.0054 (see Fig. 4). We do not understand why it should
be so.

It has been shown that the Bartnik-McKinnon (BK)
solutions and the de Sitter–EYM solutions are unstable
[2,4,6,14]. In contrast, the AdS black hole solutions were
shown to be stable [11] for u � 0. We will show that the
monopole solutions without nodes presented in this paper
are stable against spherically symmetric linear fluctuations.

In examining time-dependent fluctuations around
monopole solutions it is convenient to work in the
u�t, r� � 0 gauge. Solutions have nonvanishing w�r�,
p�r�, and H�r�, but w̃�r� � n�r� � 0. Linearized
equations for dw�t, r�, dw̃�t, r�, dn�t, r�, dp�t, r�, and
dH�t, r� have been derived in the literature [6]. Fluctu-
ations decouple in two groups. dw�t, r�, dp�t, r�, and
dH�t, r� form even-parity perturbations, whereas dw̃�t, r�
and dn�t, r� form odd-parity perturbations. The linearized
equations imply that dp�t, r�, and dH�t, r� are determined
by dw�t, r�, and dw̃�t, r� by dn�t, r�.

b�t, r� � r2pdn�w � e2ivtb�r� satisfies �2�d�
dr�2 1 Ub�r��b � v2b, where

Ub �
H

r2p2 �1 1 w2� 1
2

w2

µ
dw
dr

∂2

(11)

and dr�dr � p�H. The range of r is finite: 0 # r #

rmax. Equation (11) is of the form of the Schrödinger
equation on a one-dimensional interval. When w�r� in
the monopole solution has no node (w . 0 for all r),
then Ub . 0 is a smooth potential so that b is a smooth
function of r in the entire range satisfying bb0 � 0 at
r � 0 and rmax. The eigenvalue v2 is positive defi-
nite, i.e., the solution is stable against odd-parity per-
turbations. If w�r� has n nodes, i.e., w�rj� � 0 � j �
1, . . . , n�, the potential Ub develops �r 2 rj�22 singu-
larities. The solution b�r� to (11) is no longer regular at
r � rj so that the positivity of the differential operator
2d2�dr2 is not guaranteed. Indeed, Volkov et al. have

FIG. 4. QE ? QM is plotted as a function of b with a fixed.
QM vanishes at about b � 0.054.
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FIG. 5. The potential Uw�r� in (12) for the monopole solu-
tions with b � 0.001 and 0.005. The number of nodes �n� in
w�r� is 0 and 1, respectively. The lowest eigenvalue v2 is found
to be 0.028 or 0.023, respectively, implying the stability of the
solutions.

proven for the BK solutions that there appear exactly
n negative eigenmodes �v2 , 0� if w has n nodes [9].
Their argument applies to our case without modification.
One concludes that the solutions with nodes in w are un-
stable against parity-odd perturbations.

Similarly, parity-even perturbations dw�t, r� �
e2ivtdw�r� satisfies the Schrödinger equation with a
potential

Uw �
H�3w2 2 1�

p2r2 1 4y
d

dr

µ
Hw02

pr

∂
. (12)

Uw�r� is not positive definite, but is regular in the entire
range 0 # r # rmax. We have solved the Schrödinger
equation for dw numerically for typical monopole solu-
tions. The potential is displayed in Fig. 5 for the solutions
with �a, b� � �0, 0.001� and �0, 0.005�. The former has
no node in w, while the latter has one node. The asymp-
totic value w�`� is 0.339 or 20.878, respectively. The low-
est eigenvalue v2 is found to be 0.028 or 0.023. Hence,
these solutions are stable against parity-even perturbations.
Note that in the L , 0 case some of the n � 1 solutions
are stable against parity-even perturbations, while in the
L $ 0 case they are unstable.

In this paper a continuum of new monopole and dyon so-
lutions to the EYM equations in asymptotically AdS space
have been found. There are solutions with no node in the
magnetic component w�r� of the SU�2� gauge fields. The
1856
monopole solutions with no node in w have been shown to
be stable against spherically symmetric perturbations. The
stability of those solutions with nonzero electric fields is
currently under investigation. As the monopole and dyon
solutions are found in a continuum set, the dyon solutions
without nodes in w�r� are also expected to be stable.

The existence of stable monopole and dyon configura-
tions may have tremendous consequences in cosmology
if the early universe ever was in the AdS phase. Stable
solutions exist only with a negative cosmological con-
stant. The existence of the boundary in the AdS space
must be playing a crucial role. The connection to the
AdS/CFT correspondence [12] is yet to be explored. A
more thorough analysis of the solutions with varying L as
well as black hole solutions will be presented in separate
publications.
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