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An observable criterion is derived that allows one to distinguish nonclassical states of the harmonic
oscillator from those having a classical counterpart. A quantum state is shown to have no classica
counterpart if and only if the characteristic functions of the quadrature distributions or the s-parametrized
phase-space distributions exhibit a slower decay than for the ground state of the oscillator. This renders
it possible to experimentally check the failure of the P function to be a probability measure.
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The study of nonclassical states of light has been a
subject of rapidly increasing interest. Since the pioneer-
ing demonstration of photon antibunching by Kimble,
Dagenais, and Manddl [1], there has been a manyfold of
realizations of nonclassical effects of light, including sub-
Poissonian photon statistics [2] and squeezing [3]. Non-
classical states could also be prepared in cavity QED [4]
and in matter systems such as atomic Rydberg wave pack-
ets [5], molecular vibrations [6], and trapped atoms [7].

The formulation of a reasonable criterion for a quan-
tum state to be considered as a nonclassical one has at-
tracted agreat deal of interest ranging from the 1960s until
now [8—10]. The most common criterion is based on the
P distribution of Glauber and Sudarshan [11]. Following
Titulaer and Glauber, “fields with positive definite P func-
tions... are, in fact, precisely the quantum fields which
may be described in a natural way as possessing classical
analogs’ [8]. In the same sense Mandel has stated, “if P is
not a probability density, then the state is nonclassical” [9].

From the theoretical point of view this criterion includes
the nonclassical effects that have been considered so far.
However, in practice, one needs a criterion that allows one
to distinguish between classical and nonclassical states in
experiments. This can hardly be based on the P function
that cannot be obtained from measurements. The P dis-
tribution may not only attain negative values, but it may
even become highly singular. Criteria used in experiments
are typically based on the variance or normally ordered
variance of particular observables. The violation of such
a criterion for a certain nonclassical property cannot be
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used to conclude that the quantum state under study has a
classical counterpart. What one needs is a criterion that is
equivalent to the one based on the P distribution and that
is observable.

In the present contribution we introduce a sufficient and
necessary criterion for a quantum state to be nonclassical.
It allows one to experimentally check the failure of the P
function to be a probability density. Thecriterionisrelated
tothevariables of classical theory, such asthetrgjectory for
amechanical oscillator and thefield strength for aradiation
field. We will confine our treatment to a single degree of
freedom of a harmonic system. Although generalizations
to two or more modes appear to be straightforward, we
will not consider here specific nonclassical features such
as entanglement.

For a unified treatment of mechanics and electrodynam-
ics we use the phase-sensitive quadrature operator,

(@) = ae' + ate e, (1)

with a (at) being the annihilation (creation) operator of
the harmonic mode. By identifying the phase parameter
¢ with vt, v being the frequency of the oscillator, 2(¢)
describes the free evolution of the system. The operator
%(¢) is scaled such that its spread in the ground state of
the oscillator (or vacuum state in the case of a radiation
mode) is unity, (Ax),, = 1. That is, this operator may
represent physical quantities such as position or momen-
tum in mechanics and electric or magnetic field strengths
in electrodynamics by simply multiplying 2(¢) with the
spread of the desired quantity in the ground state.
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Besides the very close relation of the operator %(¢) to
variables used in classical physics there are two other rea-
sons to favor its use for the formulation of a criterion for
nonclassical states. Firdt, it is known that the statistics
of this observable, for ¢ values in an interval of size 7,
represents the full information on the quantum state [12].
Second, the desired statistical distributions are measurable
both for radiation fields [13] and for various quantum me-
chanical systems [14] (for a detailed review of the topic
see [15]). Thus a criterion that is based on the observable
%(¢) would exhibit two advantages: it is measurable and it
completely characterizes the quantum state of the system.

Let us start with formulating the known criterion for
nonclassical states that is based on the P distribution.
The Glauber-Sudarshan representation of the density
operator [11],

p= [ dar@laral. @

|a) being a coherent state, allows one to express normally
ordered moments of annihilation and creation operatorsin
close analogy to classical mean values,

@tram =[d2a P(a)(a™)"a™. 3)

Consequently, expectation values of normally ordered ob-
servables correspond to the classical expressions, if the
following requirement is fulfilled [8—10]: the quasiproba-
bility P(a) must be well behaved in the sense of aclassical
probability measure,

P(a) = Pu(a). (4)

That is, it should be possible to construct aclassical proba-
bility measure that agrees with the quasidistribution P(«).

A quantum state that fulfills this condition will be called
in the following a quantum state having a classical coun-
terpart. This does not mean that it realy behaves like a
classical one for the following reason. The definition of
the classical counterpart relies on normally ordered ob-
servables. Replacing an operator O = O(at,a) with its
normally ordered form, :O(at, a):, corresponds to a “sub-
traction” of the ground-state noise effects [16]. Various
observables of such a state, however, may exhibit ground-
state noise effects. Consequently, a state having aclassical
counterpart may be said to behave like a classical one if
the noise effects of the oscillator ground state are of minor
importance for describing its properties.

For a quantum state to be nonclassical, one may formu-
late the following conditions: (a) The ground-state noise
effects play a significant role for its characterization.
(b) The P function fails to be interpreted as a classical
probability measure,

P(a) # Pa(a). ®)

If one of these conditions is fulfilled the state may be
called nonclassical. The condition (a), which implies that
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operator-ordering prescriptions are relevant for character-
izing the given state, is of particular importance for small
average occupation numbers of the oscillator. In this sense
it closely corresponds to the first condition formulated by
Mandel [9]. In its present form, however, it is more di-
rectly connected with condition (b) since the ground-state
noise effects and the ordering prescription reflected by the
P function are closely related to each other.

The advantage of the criterion for nonclassical states
based on the P representation consists of the fact that it
is based on the full information on the quantum state un-
der study. Thus it applies to al observable properties of
that state. On the other hand, a serious disadvantage of
this criterion consists of the fact that it is hardly used for
interpreting experimental results. For various nonclassical
states the quasidistribution P(«) is not only negative but
highly singular; thus it is far from being determined by
measurements.

To overcome this problem we will reformulate the con-
dition (b) by using the observable 2(¢) defined in Eq. (1)
with the aim to obtain an observable criterion for a non-
classical state. The probability distribution p(x, ¢) for ob-
serving the value x for the (arbitrary but fixed) phase ¢
can be expressed in terms of the characteristic function
Gk, @),

plx, @) = ﬁ f dk e *G(k, ¢), (6)

where
Gk, @) = (™). (7)

For relating this probability distribution to the situation
in classical physics, we “subtract” the ground-state noise
effects by introducing a noise-subtracted version of the
distribution, p(x, ¢). It is obtained from Eg. (6) by re-
placing therein the characteristic function G(k, ¢) with its
normally ordered version G(k, ¢),

Gk, @) = (™)) (8)
Based on the explicit form of the operator (¢ ) and on the

Baker-Campbell-Hausdorff formula, it is easy to derive the
relation

Gk, @) = Gk, p)e ¥72, ©)

The second factor represents the (phase-insensitive) char-
acteristic function of the ground state of the oscillator.
Inserting Eq. (9) into (6) yields the physica quadrature
distribution in terms of a convolution,

plr. @) = f &' B, )pals — x).  (10)

of the noise-subtracted distribution with the (phase-
insengitive) distribution of the ground state, p (x) =
exp(—x%/2)/+/(2m).

For relating the properties of the P function to those of
the distribution p(x, ¢) it is advantageous to express the
latter by using the P representation of the density operator
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given in Eq. (2). From Egs. (6) and (8), after performing
the k integration, we derive

Plr. ) = f PaPa)sx - xale)].  (1D)

where x,(¢) = ae’® + a*e”¢. This result formally
corresponds to the expression of the distribution p(x, ¢)
in terms of a classical stochastic process (see, eg., [17]).
It has the properties of a classical stochastic process,
p(x, @) = palx, ), provided that P(a) displays the
properties of a probability measure [cf. Eq. (4)].

This allows usto reformulate the criterion (b) for anon-
classical state asfollows: The noise-subtracted quadrature
distribution, p(x, ¢), fails to be interpreted as a classical
stochastic process, p(x, ¢) # palx, ). Thisis an im-
portant result: Well-behaved P distributions are directly
related to well-behaved noise-subtracted quadrature distri-
butions. Consequently, a quantum state has nonclassical
properties if its noise-subtracted quadrature distribution
does not exhibit the properties of a classical stochastic
process.

So far, ill-behaved P functions will also lead to ill-
behaved distributions p(x, ¢), so that we still have not
obtained a measurable criterion. We have to derive an
observable condition that is necessary and sufficient for
P (x, @) not to be aprobability measure or, equivalently, for
G (k, ) not to be aclassical characteristic function (CCF).
For doing this, we start from the theorem of Bochner
[18]: “a continuous function G(k), obeying the condition
G(0) = 1, isa CCF if and only if it is positive definite.”
Here positive definiteness means that, for arbitrary real
numbers k; (i = 1,...,n), arbitrary complex numbers &;,
and any integer n, the condition

§ = Z Glki — kj)éiéi =0 (12)

i,j=1

is fulfilled. Consequently, the existence of nonclassical
properties requires that there exist values of £ and ¢
for which the normally ordered characteristic function,
G(k, ¢), fails to be postive definite. The characteris-
tic function G has the properties of a classical charac-
teristic function since it is the characteristic function for
the quadrature distribution, which is clearly a probability
distribution, so that Eq. (12) is valid. Nonclassicality
implies that the characteristic function G of the noise-
subtracted quadrature distribution violates Eq. (12), so that
the inequality

S<o0=sS (13)

must be fulfilled [ is defined by Eq. (12) with G in place
of G]. In this inequality we express G by use of Eq. (9)
in terms of G. Making use of the fact that the latter is
a CCF and thus fulfills the condition |G| = 1, one can
eventually derive the necessary and sufficient condition
for the validity of the inequality (13) by estimation of the
negative contributions therein. This yields the fact that

the function G violates Eq. (12) if and only if there exist
values of k and ¢ for which the condition

Gk, )] > 1 (14)

is fulfilled. Because of Eq. (9), the characteristic func-
tion G(k, ¢) of the measurable quadrature distribution as
afunction of k decays more slowly than the characteristic
function of the oscillator ground state,

IG(k, @)| > ¢ F/2, (15)

In the Fourier domain a slow decay corresponds to narrow
structures in the distribution.

In place of (b) we can formulate the following neces-
sary and sufficient condition for a state to be a nonclas-
sical one in terms of measurable quantities: (b*) There
exist values of the phase ¢ for which the quadrature dis-
tribution p(x, ¢) exhibits structures that are narrower than
the distribution of the ground state [19]. Correspondingly,
for those ¢ values the characteristic function G(k, ¢) as
afunction of k decays more slowly than the characteristic
function of the ground state [cf. Eq. (15)].

The criterion (b*) isindeed fulfilled for typical nonclas-
sical states, such as Fock states, squeezed states, coherent
superpositions of coherent states, and others. Concerning
the measurability of both the quadrature distribution and
its characteristic function there exists an extensive litera-
tureincluding light and matter systems (for arecent review
see [15]).

From Bochner's theorem the criterion (b*) could be
derived independently of the one using the P function. It
remains to demonstrate that the criterion (b*), which is
equivalent to the conditions (14) or (15), exactly agrees
with the original criterion (b). In terms of characteristic
functions Eq. (11) reads as

Gk, @) = D(ike %), (16)

where ®(a) = [d*B exp(aB* — a*B)P(B) isthe char-
acteristic function of the P function. From the equal-
ity (16) of the two characteristic functions it follows that
there is a one-to-one correspondence between the positive
definiteness of ® () and G. Consequently, the P function
fails to be a probability measure according to condition
(b) if and only if the measurable criterion (b*) is fulfilled.

Introducing the s-parametrized quasidistributions
P(a;s) of Cahill and Glauber [20] for s < 1, the corre-
sponding characteristic functions are given by

D(a;s) = cIf’(oz)e_(l_s)lo‘lz/z, a7)

where the exponentia factor is the characteristic function
of the ground state. Combining thisrelation with Egs. (14)
and (16), we arrive at the following criterion for a non-
classical state in terms of quasidistributions: (b**) There
exist structuresin the phase-space distribution P(«; s) that
are narrower than the ground-state distribution Py, (a; s).
Equivalently, the decay of the related characteristic func-
tion may survive the decay of the characteristic function
Dy (ass).
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The condition (b**) is completely equivalent to the con-
dition (b) we were starting from. To prove this, we may
again use the Bochner theorem [18]. We apply Eq. (17)
for s = —1 together with the fact that the characteristic
function ®(a; —1) of the Husimi Q function fulfills the
properties of a CCF. In the same way as proving that
Eqg. (14) is a sufficient and necessary condition to obey
the condition (13), one concludes that (b**) is a neces-
sary and sufficient condition for the P function not to be a
probability measure, EqQ. (5).

Let us briefly comment on the application of the neces-
sary and sufficient criteria (b*) and (b**) for the case of
realistic detection with nonunity quantum efficiency. Inthe
case of balanced homodyning, one measures a convolution
of the quadrature distribution with a Gaussian noise distri-
bution [21]; the width of the latter increases with decreas-
ing quantum efficiency #n of the detection system. Because
of the Gaussian nature of the added noise it is straightfor-
ward to prove that the necessary and sufficient condition
(b*) aso remains valid for the distribution p(x, ¢; ) that
is measured: it shows structures narrower than those of
the (measured) ground-state distribution pg.(x, ¢; ). The
situation for the criterion (b**) is similar: in the unbal-
anced homodyne measurement of the quasiprobabilities
P(a;s) the quantum efficiency may be included in the
value of s [22], so that the criterion also remains valid
for reaistic detection. Needless to say, for small quantum
efficiencies the nonclassical effects are more and more
smoothed out and may practically become unobservable.

In conclusion, we have derived criteria for nonclassical
states that are based on measurable distributions such as
quadrature or phase-space distributions. A quantum state
has no classical counterpart when these functions show
structures that are narrower than the corresponding distri-
butions of the ground state of the oscillator. Equivalently,
in such cases the characteristic functions of the quantum
state exhibit a slower decay behavior than those for the
ground state. These criteria are necessary and sufficient
for the failure of interpreting the P function as a proba-
bility measure, which is the most commonly accepted but
nonobservable criterion for a nonclassica state.
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