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We report on multicanonical simulations of the helix-coil transition of a polypeptide. The nature of
this transition was studied by calculating partition function zeros and the finite size scaling of various
quantities. New estimates for critical exponents are presented.
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A common, ordered structure in proteins is the a he-
lix and it is conjectured that formation of a helices is a
key factor in the early stages of protein folding [1]. It
is long known that a helices undergo a sharp transition
towards a random coil state when the temperature is in-
creased. The characteristics of this so-called helix-coil
transition have been studied extensively [2], most recently
in Refs. [3,4]. They are usually described in the framework
of Zimm-Bragg-type theories [5] in which the homopoly-
mers are approximated by a one-dimensional Ising model
with the residues as “spins” taking values “helix” or “coil,”
and solely local interactions. Hence, in such theories ther-
modynamic phase transitions are not possible. However, in
preliminary work [4] it was shown that our all-atom model
of polyalanine exhibits a phase transition between the or-
dered helical state and the disordered random-coil state. It
was conjectured that this transition is due to long-range in-
teractions in our model and the fact that it is not one dimen-
sional: it is known that the 1D Ising model with long-range
interactions also exhibits a phase transition at finite T if the
interactions decay like 1�rs with 1 # s , 2 [6]. Our aim
now is to investigate this transition in the framework of a
critical theory by means of the finite size scaling (FSS)
analysis of partition function zeros. Analysis of partition
function zeros is a well-known tool in the study of phase
transitions but was to our knowledge never used before to
study biopolymers.

For our project, the use of the multicanonical algorithm
[7] was crucial. The various competing interactions within
the polymer lead to an energy landscape characterized by a
multitude of local minima. Hence, in the low-temperature
region, canonical simulations will tend to get trapped in
one of these minima and the simulation will not thermalize
within the available CPU time. One standard way to over-
come this problem is the application of the multicanonical
algorithm [7] and other generalized-ensemble techniques
[8] to the protein folding problem [9]. For polyalanine,
both the failure of standard Monte Carlo techniques and
0031-9007�00�84(8)�1836(4)$15.00
the superior performance of the multicanonical algorithm
are extensively documented in earlier work [10].

In the multicanonical algorithm [7] conformations with
energy E are assigned a weight wmu�E� ~ 1�n�E�. Here,
n�E� is the density of states. A simulation with this weight
will lead to a uniform distribution of energy:

Pmu�E� ~ n�E�wmu�E� � const . (1)

This is because the simulation generates a 1D random
walk in the energy, allowing itself to escape from any lo-
cal minimum. Since a large range of energies are sampled,
one can use the reweighting techniques [11] to calculate
thermodynamic quantities over a wide range of tempera-
tures by

�A�T �

R
dx A�x�w21���E�x����e2bE�x�R

dx w21���E�x����e2bE�x� , (2)

where x stands for configurations.
It follows from Eq. (1) that the multicanonical algorithm

allows us to calculate estimates for the spectral density:

n�E� � Pmu�E�w21
mu�E� . (3)

We can therefore construct the partition function from
these estimates by

Z�b� �
X
E

n�E�uE , (4)

where u � e2b with b the inverse temperature, b �
1�kBT . The complex solutions of the partition function
determine the critical behavior of the model. They are the
so-called Fisher zeros [12,13] and correspond to the com-
plex extension of the temperature variable.

Our investigation of the helix-coil transition for poly-
alanine is based on a detailed, all-atom representation of
that homopolymer, and goes beyond the approximations of
the Zimm-Bragg model [5]. The interaction between the
atoms was described by a standard force field, ECEPP�2
[14] (as implemented in the KONF90 program [15]), and is
© 2000 The American Physical Society



VOLUME 84, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 21 FEBRUARY 2000
given by

Etot � EC 1 ELJ 1 EHB 1 Etor , (5)

EC �
X
�i,j�

332qiqj

erij
, (6)

ELJ �
X
�i,j�

√
Aij

r12
ij

2
Bij

r6
ij

!
, (7)

EHB �
X
�i,j�

√
Cij

r12
ij

2
Dij

r10
ij

!
, (8)

Etor �
X

l

Ul�1 6 cos�nlxl�� . (9)

Here, rij (in Å) is the distance between the atoms i and
j, and xl is the lth torsion angle. Note that with the
electrostatic energy term EC our model contains a long-
range interaction neglected in the Zimm-Bragg theory [5].
Since one can avoid the complications of electrostatic and
hydrogen-bond interactions of side chains with the sol-
vent for alanine (a nonpolar amino acid), explicit solvent
molecules were neglected. Chains of up to N � 30 mono-
mers were considered. We needed between 40 000 sweeps
(N � 10) and 500 000 sweeps (N � 30) for the weight
factor calculations by the iterative procedure described in
Refs. [7,16]. All thermodynamic quantities were estimated
from one production run of Nsw Monte Carlo sweeps start-
ing from a random initial conformation, i.e., without in-
troducing any bias. We chose Nsw � 400 000, 500 000,
1 000 000, and 3 000 000 sweeps for N � 10, 15, 20, and
30, respectively.

For our analysis of the partition function zeros we
first divide the energy range into intervals of lengths
0.5 kcal�mol. Equation (4) becomes now a polynomial in
the variable u and can be easily solved with MATHEMATICA

to obtain all complex zeros u0
j � j � 1, 2, . . .�. For the case

of N � 10 we also repeated the calculation of the zeros
for energy bin sizes 1.0 kcal�mol and 0.25 kcal�mol. The
changes in the zeros were smaller than the statistical er-
rors. The effect of the energy bin size on the zeros is also
discussed in Ref. [17]. Figure 1 shows the distribution of
the zeros for N � 30 and provides already strong evi-
dence for a singularity on the real axis: in the case of the
(analytic) Zimm-Bragg theory the zeros would be located
solely on the negative real u axis [18]. We summarize
in Table I the leading zeros for each of the four chain
lengths, where we have used the mapping u � e2b�2 due
to our binning procedure.

The FSS relation by Itzykson et al. [13] for the leading
zero u0

1�N�,

u0
1�N� � uc 1 AN21�dn�1 1 O�Ny�d��, y , 0

(10)

shows that the distance from the closest zero u0
1 to the

infinite-chain critical point uc � e2bc�2 on the Re�u� axis
FIG. 1. Partition function zeros in the complex u plane for
N � 30. For the Zimm-Bragg model the zeros would be located
solely on the negative real u axis.

scales with a relevant linear length L, which we translated
as N1�d in the above equation. Here, bc is the inverse
critical temperature of the infinite long polymer chain and
y is the correction to scaling exponent. We remark that,
unlike in the Zimm-Bragg model, we have no theoreti-
cal indication to assume d as a particular integer geo-
metrical dimension and report therefore estimates for the
quantity dn.

For sufficiently large N , the exponent dn can be ob-
tained from the linear regression

2 lnju0
1�N� 2 ucj �

1
dn

ln�N� 1 a . (11)

This relation requires an accurate estimate for uc. There-
fore, we prefer to calculate our estimates for dn from
the corresponding relation with ju0

1 2 ucj replaced by its
imaginary part Imu0

1. Including chains of all lengths,
N � 10 30, this approach leads to dn � 0.93�5�, with
a goodness of fit Q � 0.48. Figure 2 displays the corre-
sponding fit. Omitting the smallest chain, i.e., restricting
the fit to the range N � 15 30, does not change the above
result. We obtain now dn � 0.93�7�, with Q � 0.22. This
indicates that the dn determination is stable over the stud-
ied chains and, therefore, the correction exponent y can be
disregarded in the face of the present statistical error.

Considering the real part of the leading zeros given in
Table I, Re�b0

1�N�� � 2 ln��Reu0
1�N��2 1 �Imu0

1�N��2	,
we can derive the critical temperature through the follow-
ing FSS fit [19]:

Re�b0
1�N�� � bc 1 bN21�dn . (12)

TABLE I. First partition function zeros for polyalanine chains
of various chain lengths.

N Re�u0
1� Im�u0

1� Re�b0
1 � Im�b0

1 �

10 0.5620(60) 0.0702(33) 1.138(21) 0.248(11)
15 0.6015(23) 0.0472(21) 1.0104(77) 0.1566(67)
20 0.6105(29) 0.032 75(88) 0.9842(94) 0.1072(26)
30 0.6159(19) 0.022 00(78) 0.9681(63) 0.0714(25)
1837
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FIG. 2. Linear regression for 2 ln�Imu0
1�N�� in the range

N � 10 30.

We obtain bc � 0.906�12� (Q � 0.005) for the range
N � 10 30, and bc � 0.929�14� (Q � 0.63) for N �
15 30. The last and more acceptable estimate corre-
sponds to Tc�`� � 541�8� K.

A stronger version for the relation (10) considers that
the next zeros u0

j �N� should also satisfy a scaling re-
lation [13],

ju0
j �N� 2 ucj 


µ
j
N

∂1�dn

, (13)

where j labels the zeros in order of increasing distance
from uc. This relation is expected to be satisfied for large
j and allows for an independent check of the estimate
for our exponent dn. The scaling plot in Fig. 3 for the
roots closest to the critical point uc demonstrates that the
assumed scaling relation is indeed observed for our data
as N increases and consistent with our estimate of the
exponent dn.

Our results for the critical temperature and critical expo-
nent can be compared with independent estimates obtained
from FSS of the specific heat:

CN �T � � b2��E2�T �� 2 �E�T ��2��N . (14)

FIG. 3. Scaling behavior of the first j complex zeros closest
to uc � 0.6284, for chain lengths N � 10, 15, 20, and 30.
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Defining the critical temperature Tc�N� as the position
where the specific heat CN �T � has its maximum, we
can again calculate the critical temperature by means of
Eq. (12). With the values in Table II we obtain Tc�`� �
544�12� K, which is consistent with the value obtained
from the partition function zeros analysis, Tc�`� �
541�8� K. Choosing T1�N� and T2�N� such that C�T1� �
1�2C�Tc� � C�T2�, we have the following scaling relation
for the width GC�N� of the specific heat [19]:

GC�N� � T2�N� 2 T1�N� ~ N21�dn . (15)

Using the above equation and the values given in Table II,
we obtain dn � 0.98�11� �Q � 0.9� for chains of length
N � 15 to N � 30, i.e., omitting the shortest chain. This
value is in agreement with our estimate dn � 0.93�5�, ob-
tained from the partition function zero analysis. Including
N � 10 leads to dn � 1.19�10�, but with a less accept-
able fit (Q � 0.1). The analysis of partition function zeros
seems also to be more stable than one relying on Eq. (15).
No significant change in dn was observed when the data
from Ref. [4] (which relied on a much smaller number of
Monte Carlo sweeps) were used in the partition function
zeros analysis, while Eq. (15) leads for this reduced statis-
tics to an estimate for dn � 1.9.

Through the scaling relation for the peak of the specific
heat, we can evaluate yet another critical exponent, the
specific heat exponent a, by

Cmax
N ~ Na�dn . (16)

In particular, with the values for Cmax
N as given in Table II,

we obtain a � 0.86�10�. The scaling plot for the spe-
cific heat is shown in Fig. 4: curves for all lengths of the
polyalanine chains nicely collapse on each other indicat-
ing the scaling of the specific heat and the reliability of our
exponents. It is worth noting that our estimates for dn and
a, as obtained from the finite size scaling of the specific
heat, obey within the error bars the hyperscaling relation
dn � 2 2 a.

It is well known that the renormalization-group fixed
point picture leads to a critical exponent dn � 1, a � 1,
and g � 1 for a first-order phase transition [19–21]. Our
estimate dn � 0.93�5� for the correlation exponent devi-
ates from unity and rather indicates that the “helix-coil
transition” is a strong second-order transition. However,
the error bars are such that a first-order phase transition

TABLE II. Numerical results for polyalanine chains of vari-
ous lengths: critical temperature Tc defined by the maximum
of specific heat Cmax, width GC of peak in specific heat and
temperature Tmin, where the Binder cumulant b�T , N� has its
minimum, b�Tmin, N�.

N Tc Cmax GC Tmin b�Tmin, N�

10 427(7) 8.9(3) 150(7) 298 20.48�4�
15 492(5) 12.3(4) 119(5) 429 20.59�10�
20 508(5) 16.0(8) 88(5) 469 20.55�8�
30 518(7) 22.8(1.2) 58(4) 500 20.20�4�
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FIG. 4. Scaling plot for the specific heat CN �T� as a function
of temperature T , for polyalanine molecules of chain lengths
N � 10, 15, 20, and 30.

cannot be excluded. Our values for the specific heat ex-
ponent a � 0.86�10� and the susceptibility exponent g �
1.06�14� (data not shown) are consistent with a first-order
phase transition, but also not conclusive. A common way
to evaluate the order of a phase transition is by means of
the Binder energy cumulant [22],

b�T , N� � 1 2
�E4�T , N��

3�E2�T , N��2 . (17)

For a second-order phase transition one would expect
that the minimum of this quantity b�Tmin, `� approaches
2�3. Here Tmin defines the temperature where the cu-
mulant reaches its minimum value and b�Tmin, `� �
limN!` b�T , N�. With the present values of Table II
we find the infinite volume extrapolation b�Tmin, `� �
0.23�13� �Q � 0.12� for the range N � 15 30, which is
consistent with a first-order phase transition. However,
we cannot exclude the possibility of a second-order phase
transition because the energy cumulant scales with the
maximum of specific heat [23], b�T , N� 
 Na�dn21, and
the true asymptotic limit is reached only for rather large
chains due to the value of a�dn. In fact, the straight line
fit for the range N � 10 30 is less consistent with our
data (Q � 0.001). Hence, we conclude that our results
seem to favor a (weak) first-order phase transition, but
are not precise enough to exclude the possibility of a
second-order phase transition.

To summarize, we have used a common technique for
investigation of phase transitions, analysis of the finite
size scaling of partition function zeros, to evaluate the
helix-coil transition in an all-atom model of polyalanine.
Although our results are not precise enough to determine
the order of the phase transition due to the complexity of
the simulated model, we have demonstrated that the transi-
tion can be described by a set of critical exponents. Hence,
we have shown for this example that structural transitions
in biological molecules can be described within the frame-
work of a critical theory.
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