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Random Walks in the Space of Conformations of Toy Proteins
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Monte Carlo dynamics of the lattice toy protein of 48 monomers is interpreted as a random walk in
an abstract (discrete) space of conformations. To test the geometry of this space, we examine the return
probability P�T�, which is the probability to find the polymer in the native state after T Monte Carlo
steps, provided that it starts from the native state at the initial moment. Comparing computational data
with the theoretical expressions for P�T� for random walks in a variety of different spaces, we show that
conformation spaces of polymer loops may have nontrivial dimensions and exhibit negative curvature
characteristics of Lobachevskii (hyperbolic) geometry.

PACS numbers: 87.14.Ee, 61.25.Hq, 87.15.Aa
Levinthal’s paradox [1] is universally considered the
essence of the protein folding problem. In its most di-
rect form, the paradox revolves around the exponentially
large number of possible conformations being immeasur-
ably larger than what a protein can conceivably test within
the observable time scale. Levinthal’s paradox arises from
thinking of protein folding as a search in a conformation
space resembling a golf course with just one hole repre-
senting the native state. To resolve the problem, it has
been conjectured in the literature [2–6] that volume in-
teractions between monomers should provide an energetic
bias towards the native state. However undoubtedly cor-
rect, this should not overshadow the necessity to under-
stand the search in conformation space. Indeed, if we start
from an open coil conformation, then volume interactions
cannot provide any significant bias for a while, at least until
after some minimal number of contacts has been formed.
In macroscopic terms, this initial stage is an uphill climb
over an entropic barrier. In microscopic terms, it is a ran-
dom walk in conformation space. In order to initiate the
energy-driven downhill slide towards the native state, or
to enter the funnel-shaped [3,4,6] area of the free energy
landscape [7], a fluctuation has to provide a sufficient de-
crease in entropy. In other words, a random walk has to
bring the system into the specific region in conformation
space, which corresponds to the transition (macro)state,
most likely to a critical nucleus of some kind [2,8–10].
The system searches for this critical (macro)state through
a random walk in conformation space, largely unaffected
by heteropolymeric interaction energies, such that in some
cases it may be similar to the kinetics of a homopolymer
collapse [11]. Unfortunately, this problem remains out of
reach of current simulation techniques.

In order to pave the way to it, we will consider in this
work another related problem of random walks in confor-
mation space, namely, that of fluctuations around the na-
tive state. This is itself a pressing issue in protein folding
theory. Indeed, understanding these fluctuations is neces-
sary in order to address the corrections to mean field theory
0031-9007�00�84(8)�1828(4)$15.00
which is formulated in terms of the random energy model
(see review [12] and references therein).

We will restrict ourselves with the standard lattice pro-
tein model of 48 monomers. We choose to work with the
particular native state conformation addressed in [13]. In
order to remain in the vicinity of the native state, we can
permanently fix the contacts which form the nucleus. The
nucleus conformation, as conjectured in [13], is shown in
Fig. 1. As a matter of fact, determination of the nucleus
remains a subject of scrutiny and heated debate [14–18].
The various models of a single nucleus [8], of multiple nu-
clei [10], and of nucleation classes [18] are being debated
but the choice among the different models is not the sub-
ject of this work. The nucleus from the work [13] which is
used here has been chosen arbitrarily among a large num-
ber of possible conformations with nuclei surrounded by
loops.

In order to address purely entropic factors, we examine
polymer with no interactions—except for the constraints
of polymer connectivity, excluded volume, and fixed con-
tacts. The resulting structure is essentially that of many
loops with fixed ends in the nucleus. For the discrete lat-
tice model, we consider the conformation space as a graph
in which the conformations are represented by nodes on
the graph. If two conformations can be interconverted via
a single Monte Carlo move (end flip, corner flip, or crank-
shaft), their corresponding nodes are connected by edges
on the graph [3,4,19]. A Monte Carlo run is thus equiva-
lent to a random walk on that graph [20].

As stated above, we consider here a problem of fluctua-
tions around the native state; in this case, random walk
starts in the origin, which is the native state, and we ask
how frequently it returns back to the origin. Thus, our
plan is as follows: we will perform a long Monte Carlo
run of the above described loop model, starting from the
folded native state, and we will record all the time moments
(or Monte Carlo steps) of spontaneous folding, or random
arrival to the origin, which is the native state. This will give
us the return probability, P�T � [21], as a function of Monte
© 2000 The American Physical Society
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FIG. 1. The 48-mer conformation. The dark contacts indicate
critical folding nucleus for this particular conformation, accord-
ing to the data of the work by Mirny [13]. The loops considered
in the present work are shown as thick lines.

Carlo time, T . In order to interpret these data, we will
compare them with the following summary of the known
results for P�T � in a variety of different (discrete) spaces:

(i) For a random walk of T steps in an unbounded
Euclidean space (cubic lattice) of dimension d, the proba-
bility of return is

P�T � � �2pT�d�2d�2 � T2d�2. (1)

(ii) Equation (1) holds for a fractal space with noninteger
d; in this case d is the spectral dimension [22].

(iii) It is important for us to consider a random walk in a
bounded region, because the set of conformations is always
finite for lattice models, and thus, the region of interest in
the conformation space is also finite. For a random walk
in a bounded “cavity” in Euclidean space, or on a bounded
fractal,

P�T � �

8<
: � 2p

d T �2d�2, when T , T� � R2,
1
M

z0

z̄ , when T . T� � R2.
(2)

Here R is the “size” of the allowed conformation space
(graph), M is the total number of allowed conformations
(or graph nodes), z0 and z are the numbers of possible
Monte Carlo moves (or incident graph edges), respectively,
for the native state and averaged over all states. Equa-
tion (2) means that a random walk does not feel the bounds
at “small” times until it arrives at the boundary. At later
times, it covers all of the available region in a uniform man-
ner, then the probability for visiting each point (conforma-
tion), a, is simply proportional to the number of ways, za ,
incident to that point. To better understand the meaning
of R, it is useful to define the “distance” Dab between
two conformations, a and b, as the minimal number of
elementary moves necessary to convert a into b. Then,
according to graph theory, the diameter of the graph rep-
resenting our conformation space should be defined as the
maximum of Dab over all pairs of conformations. Our R
is then typically on the order of one-half of this diameter.
Note that in the limit of very long loops, N ¿ 1, we ex-
pect the space diameter and R to scale as R � N .

(iv) For a random walk in a d-dimensional Lobachevskii
space [23,24]

P�T � �

(
T2d�2 exp�2Tl�2d�, when T , T�,

1
M

z0

z̄ , when T . T�,
(3)

where l is the Gaussian curvature (inverse squared curva-
ture radius) of the space. This formula can be explained
in the following simple way. At the scale T ø 1�l, when
typical distance from the origin remains smaller than the
curvature radius, the space appears effectively flat and
Eq. (3) reduces to (1). On the other hand, for the interme-
diate T , between 1�l and R2, P�T � is dominated by the
exponential term, which can be understood if one remem-
bers that a Cayley tree graph is the discrete counterpart of
Lobachevskii space.

It is important to consider Lobachevskii geometry be-
cause, as we mentioned, the conformation space diameter
scales as N for very long loops in the N ¿ 1 limit, while
the number of conformations scales exponentially with N .
This means that there is an exponential growth of the num-
ber of conformations as a function of the distance from
any given conformation (e.g., native). Such an exponen-
tial growth is the signature of Cayley tree or Lobachevskii
geometry [25]. Thus, we expect the window of exponen-
tial behavior at large N or for longer loops.

(v) The analysis of loop conformations which arise from
a fixed nucleus of contacts becomes more complicated if
we have multiple loops. Still, if loops are independent of
one another, then a simple estimate for the conformation
space of all the loops combined can be obtained. Consider
k loops each having a fraction fi of the total number of
movable monomers. When a monomer is chosen for a
Monte Carlo move, the probability that it will be from
loop i is fi . Assume that each loop lives in an unbounded
Euclidean space so that the probability for loop i to fold
after ti Monte Carlo steps is P�ti� � t

2di�2
i , neglecting

constant factors. The probability for all loops to return
after time T , P�T �, is thus

P�T � �
TX

t1,...,tk�0

d

√
T 2

X
i

ti

!
kY

i�1

f
ti
i Pi�ti�

T !Q
ti!

. (4)

Using Stirling’s approximation, and noticing that due to
the combinatorial factor, the sum is dominated at large T
by the term in which ti � fiT , we obtain for independent
loops

P�T � � T2deff�2, where deff �
kX

i�1

di . (5)
1829
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(vi) In reality, different loops are not independent. To
some extent they obstruct each other’s folding. In general,
for obstructing loops, we expect

deff #

kX
i�1

di . (6)

With the summary of mathematical results for the return
probability in different geometries, we can now proceed to
the computer experiments on the loops shown in Fig. 1.

The return probability for loops 1, 2, and 3 is shown
in Fig. 2 as a function of return time. The log-log graphs
indicate clearly the power law dependence characteristic
of Euclidean geometry (1). The dimensions in loop space
for loops 1, 2, and 3, according to Fig. 2, are d1 � 1.74,
d2 � 0, and d3 � 2.64, respectively.

To see why the dimension for loop 2 is zero, note that
there are only two possible positions for loop 2. At any
given time the probability for loop 2 to be in one posi-
tion or the other is 1�2, which means that the probability
of return must be P�T � � 1�2 or lnP�T � � 20.69, con-
sistent with the result shown in Fig. 2. The leveling off
expected according to Eq. (2) in a bounded space is also
seen for loop 1. The saturation level [which corresponds
to 1�P � exp�3.3� � 27] and saturation time (T� � 67)
are roughly consistent with both the first and the second
line of Eq. (2) given that the number of conformations for
loop 1 is M � 51, and the number of allowed moves for
the native state is z0 � 4. Loop 3 will undoubtedly ex-
hibit leveling off as well, but at longer times, since loop 3
is much longer. We did not reach this in our Monte Carlo
experiment.

To see the effect of having multiple loops on the loop
space dimension, we examine conformations in which both
loops 1 and 3 are allowed to move and those in which loops
2 and 3 are allowed to move. The reason for this choice

FIG. 2. Log-log plot of the return probability as a function of
return time for loop 1, loop 2, and loop 3. The dimensions
in conformation space for loops 1, 2, and 3 are d1 � 1.74,
d2 � 0, and d3 � 2.64. The lines shown have slopes of 2di�2.
Inset: Probability of return for loops 1 and 3, and for loops
2 and 3 combined. The corresponding dimensions are d13 �
4.40 � d1 1 d3 and d23 � 2.52 � d2 1 d3.
1830
of loops is that loops 1 and 3 (and loops 2 and 3) are suf-
ficiently far apart on the conformation that their interac-
tions are negligible, consistent with our simple analytical
estimate. The effective combined dimension for loops 1
and 3 is d13 � 4.40 � d1 1 d3 and for loops 2 and 3 is
d23 � 2.52 � d2 1 d3 (see Fig. 2) in agreement with the
approximations given in Eq. (5).

The conformation space becomes even more interesting
with longer loops such as loop 4 (see Fig. 1), which goes
from monomer 20 to 33. As Fig. 3 indicates, the behav-
ior of P�T � for this loop is consistent with Lobachevskii
geometry [first line of Eq. (3)]. A least-squares fit of
P�T � gives d4 � 1.5, and l � 4.9 3 1028. This value
of l � 1�4pr2 corresponds to the curvature radius about
r � 1000. Thus, at rather small scales below r the confor-
mation space of the loop 4 is a usual fractal graph, while at
larger scales it branches exponentially like a Cayley tree.
Physical nature of branching in the conformation space is
very simple: when two different pieces of polymer are
close together, each piece can move either on one or on
the other side of the second piece, and to switch from one
side to the other it has to go back, which is precisely the
description of the bifurcation point on the Cayley tree. The
rather large numerical value of r can be speculated to be of
the same origin as that of the large values of the entangle-
ment length Ne known in polymer dynamics [26]. It can be
also compared to the characteristic length associated with
formation of nontrivial knots upon the loop closure [27].
Undoubtedly, P�T � for loop 4 will reach a plateau [second
line of Eq. (3)] at the level about 1028; we did not pull
our simulation quite that far, since we do not expect to see
anything interesting there.
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FIG. 3. Return probability as a function of return time for
loop 4. Since the return time is typically very long, it is difficult
to gather statistics. To circumvent this problem, the data were
binned over the time intervals of 2 3 106. Thus, the apparent
crossover of the log-log plot at small times reflects this binning
rather than any physical peculiarity of the loop 4 dynamics.
The inset shows the same data in semilog scale and indicates
exponential behavior at long times, which is consistent with
Lobachevskii geometry. The least-square fit yields d � 1.5 and
l � 4.9 3 1028.
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To conclude, we have shown that there exists a nontriv-
ial geometry of the conformation space, with noninteger
dimensions and negative (Lobachevskii) curvature. While
the very fact of negative curvature, or exponential branch-
ing, of the phase space is due to the general property that
volume is exponential in radius in this space, the actual
curvature may be different for loops including chain ends,
such as loops 1 and 3. Returning to the introduction, we
repeat that the numerical part of the present work tested
mainly short excursions, or local geometry of the confor-
mation space in the vicinity of native state, which is di-
rectly relevant for the problem of fluctuations in the folded
phase. In regards to another more frequently discussed
problem of folding time, which is defined as mean first
passage time starting from an arbitrary open conformation,
the question is how long does it take for a random walk to
bring the system into the critical region v, where energetic
bias takes over? To answer this, in addition to the overall
conformation space geometry, one has to know more about
v: what is the shape and fractal dimension of v, what is its
boundary, etc. Although we do not know answers to these
pressing questions, we do know that the Levinthal-style
estimate of folding time as t � jVj�jvj, where V is the
entire conformation space, and j · · · j means the number of
conformations in the domain “· · ·,” is valid only for very
special ways of embedding v inside V [lower line in (3)].
Thus, in addition to the question of energetic bias towards
the native state, an understanding of random walks in con-
formation space is crucial to the understanding of protein
folding.
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