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Statistical Mechanics of Systems with Heterogeneous Agents: Minority Games
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We study analytically a simple game theoretical model of heterogeneous interacting agents. We show
that the stationary state of the system is described by the ground state of a disordered spin model which
is exactly solvable within the simple replica symmetric ansatz. Such a stationary state differs from the
Nash equilibrium where each agent maximizes her own utility. The latter turns out to be characterized
by a replica symmetry broken structure. Numerical results fully agree with our analytical findings.

PACS numbers: 02.50.Le, 05.20.Dd, 64.60.Ak, 87.23.Ge
Statistical mechanics of disordered systems provides
analytical and numerical tools for the description of com-
plex systems, which have found applications in many in-
terdisciplinary areas [1]. When the precise realization of
the interactions in a heterogeneous system is expected not
to be crucial for the overall macroscopic behavior, then
the system itself can be modeled as having random inter-
actions drawn from an appropriate distribution. Such an
approach appears to be very promising also for the study
of systems with many heterogeneous agents, such as mar-
kets, which have recently attracted much interest in the
statistical physics community [2,3]. Indeed it provides a
workable alternative to the so-called representative agent
approach of microeconomic theory, where, assuming that
agents are identical, one is lead to a theory with one single
(representative) agent [4].

In this Letter, we present analytical results for a simple
model of heterogeneous interacting agents, the so-called
minority game (MG) [3,5], which is a toy model of N
agents interacting through a global quantity representing
a market mechanism. Agents aim at anticipating market
movements by following a simple adaptive dynamics in-
spired at Arthur’s inductive reasoning [6]. This is based
on simple speculative strategies that take advantage of the
available public information concerning the recent market
history, which can take the form of one of P patterns. Nu-
merical studies [3,7–9] have shown that the model dis-
plays a remarkably rich behavior. The relevant control
parameter [3,7] turns out to be the ratio a � P�N be-
tween the “complexity” of information P and the number
N of agents, and the model undergoes a phase transition
with symmetry breaking [8] independently of the origin of
information [9].

We shall limit the discussion on the interpretation
of the model—which is discussed at some length in
Refs. [3,7]—to a minimum and rather focus on its
mathematical structure and to the analysis of its statistical
properties for N ¿ 1. Our main aim is indeed to show
that the model can be analyzed within the framework of
statistical mechanics of a disordered system [1].
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We find that dynamical steady states can be mapped onto
the ground state properties of a model very similar to that
proposed in Ref. [10] in the context of optimal dynam-
ics for attractor neural networks. There [10] one shows
that the minimization of the interference noise is equiva-
lent to maximizing the dynamical stability of each device
composing the system. Conversely, we show that the in-
dividual utility maximization in interacting agent systems
is equivalent to the minimization of a global function. We
also find that different learning models lead to different
patterns of replica symmetry breaking.

The model is defined as follows [8]: Agents live in
a world which can be in one of P states. These are la-
beled by an integer m � 1, . . . ,P which encodes all the
information available to agents. For the moment being,
we follow Ref. [9] and assume that this information con-
cerns some external system so that m is drawn from a
uniform distribution �m � 1�P in �1, . . . ,P�. Each agent
i � 1, . . . ,N can choose between one of two strategies,
labeled by a spin variable si [ �61�, which prescribes
an action a

m
si ,i for each state m. Strategies may be “look

up tables,” behavioral rules [3,6], or information process-
ing devices. The actions a

m
s,i are drawn from a bimodal

distribution P�ams,i � 61� � 1�2 for all i, s, and m, and
they will play the role of quenched disorder [1]. Hence,
there are only two possible actions, such as “do something”
�ams,i � 1� or “do the opposite” �ams,i � 21�. It is conve-
nient [8] to make the dependence on s explicit in a

m
s,i , intro-

ducing v
m
i and j

m
i so that a

m
s,i � v

m
i 1 sj

m
i [11]. If agent

i chooses strategy si and her opponents choose strategies
s2i � �sj , j fi i�, in state m, she receives a payoff,

u
m
i �si , s2i� � 2a

m
si ,iG�Am� , (1)

where, defining Vm �
P
j v

m
j ,

Am �
X
j

a
m
sj ,j � Vm 1

X
j

j
m
j sj . (2)

The function G�x�, which describes the market mecha-
nism, is such that xG�x� . 0 for all x so that the total
payoff to agents is always negative: the majority of agents
© 2000 The American Physical Society
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receives a negative payoff whereas only the minority of
them gain. Note that the agent-agent interaction, which
comes from the aggregate quantityG�Am�, is of mean-field
character.

The game defined by the payoffs in Eq. (1) can be ana-
lyzed along the lines of game theory [12] by looking for its
Nash equilibria in the strategies space �sj , j � 1, . . . ,N�.
Before doing this, we prefer to discuss the dynamics of in-
ductive agents following Refs. [3,7,8]: There, the game is
repeated many times and agents try to estimate empirically
which of the two strategies they have is the best one, using
past observations. More precisely, each agent i assigns a
score Us,i�t� to her sth strategy at time t, and we assume,
as in Ref. [13], that she chooses that strategy with proba-
bility [14]

ps,i�t� � Prob�si�t� � s� � CeGUs,i �t�, (3)

with C21 �
P
s0 e

GUs0 ,i �t� and G . 0. The scores are ini-
tially set to Us,i�0� � 0, and they are updated as

Us,i�t 1 1� � Us,i�t� 2 a
m�t�
s,i G�Am�t���P . (4)

The idea is that if a strategy s has predicted the right
sign, i.e., if a

m
s,i � 2sgnG�Am�, its score, and, hence, its

probability of being used, increases. Note that a
m
s,iG�Am�

in Eq. (4) is not the payoff u
m
i �s, s2i� which agent i would

have received if she had actually played strategy s fi si�t�.
Indeed G�Am� depends on the strategy si�t� that agent i
has actually played through Am. Agents in the MG neglect
this effect and behave as if they were facing an external
process G�Am� rather than playing against other N 2 1
agents. This may seem reasonable for N ¿ 1 since the
relative dependence of aggregate quantities on each agent’s
choice is expected to be small. We shall see below [see
Eq. (11)] that this is not true: If agents consider the impact
of their actions on Am, the collective behavior changes
considerably.

We focus on the linear case G�x� � x, which allows
for a simple treatment. Other choices, such as the original
one, G�x� � sgnx, lead to similar conclusions, as will be
discussed elsewhere [15]. With this choice, the total losses
of agents is 2

P
i u

m
i � �Am�2. The time average s2 of

�Am�2 is shown in Fig. 1, as a function of a � P�N . The
system shows a complex behavior characterized, among
other things, by a phase transition at ac � 0.34 [8], where
s2 shows a cusp and a small a phase where s2 increases
with G [13].

In order to uncover this behavior, let us focus on the
long time behavior of the dynamics. The key observation
is that, in the long run, the score of a strategy depends
on its performance in all P states. Hence, the behavior of
agents will change systematically only on time scales of
order P. This suggests introduction of the rescaled time
t � t�P. As P ! `, any finite interval dt � Dt�P is
made of infinitely many time steps, and we can use the
law of large numbers to approximate time averages with
statistical averages over the variables m�t� and si�t� from
their respective distributions �m and ps,i . We henceforth
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FIG. 1. s2�N versus a � P�N for P � 26 for inductive dy-
namics (full squares), for the numerical minimization of Eq. (7)
(open squares), corrected inductive dynamics (full diamonds),
and the ground state of s2 (open diamonds). The full and the
dashed lines are the corresponding analytic results. Averages
are taken over 200 realizations.

use the notation o �
P

m �mom for averages over m and
�?	 for averages on si�t�, and we define mi�t� � �si�t�	.
With this notation, s2 reads

s2 � �A2	 � V2 1
X
i


j2
i 1 2Vjimi�

1
X
ifij

jijjmimj , (5)

where we have used statistical independence of si , i.e.,
�sisj	 � mimj 1 �1 2 m2

i �di,j. The evolution of scores
Us,i in continuum time t is obtained iterating Eq. (4) for
Dt � Pdt time steps. Using Eq. (3) in the form mi �
tanh
G�U11,i 2 U21,i��, we find

dmi
dt

� 22G�1 2 m2
i �

"
Vji 1

X
j

jijjmj

#
. (6)

This can be easily written as a gradient descent dynamics
dmi�dt � 2G�1 2 m2

i � �≠H�≠mi� which minimizes the
Hamiltonian

H � �A	2 � s2 2
X
i

j
2
i �1 2 m2

i � . (7)

As a function of mi , H is a positive definite quadratic
form, which has a unique minimum. This implies that the
stationary state of the MG is described by the ground state
properties of H. It is easy to see [15] that H is closely

related to the order parameter u �
q

�sgnA	2 introduced
in [8], which is a measure of the system predictability [8].
Indeed H ~ u2 when u is small, suggested that inductive
agents actually minimize predictability rather than their
collective losses s2.

It is possible to study the ground state properties of
H in Eq. (7) using the replica method [1]. First, we
introduce an inverse temperature b [16] and compute the
1825
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average over the disorder variables J � �ams,i� of the par-
tition function of n replicas of the system, �Zn	J. Next,
we perform an analytic continuation for noninteger values
of n, thus obtaining �lnZ	J � limn!0

�Zn	J21
n . The “free

energy” FID � 2�lnZ	J�b depends on the overlap ma-
trix Qa,b � �mai m

b
i 	 �a, b � 1, . . . , n, a fi b� and on the

order parameter Qa � �1�N�
P
i�m

a
i �2, together with their

Lagrange multipliers ra,b and Ra, respectively. FID can
be calculated using a saddle point method that, within the
replica symmetric (RS) ansatz Qa,b � q, ra,b � r (for all
a , b), and Qa � Q, Ra � R (for all a), leads to

FID �
a

2
1 1 q

a 1 b�Q 2 q�
1

a

2b
log

∑
1 1

b�Q 2 q�
a

∏

1
b

2
�RQ 2 rq�

2
1
b

Z
dF�z � log

Z 1

21
ds e2bV �sjz �,

where V �x j z � � b�r 2 R� �x2�2� 2
p
r zx, and F is

the normal distribution. The ground state properties of
H are obtained solving the saddle point equations [1] in
the limit b ! `. Figure 1 compares the analytic and nu-
merical findings for s2. For a . ac � 0.337 40 . . . , the
solution leads to Q � q , 1 and a ground state energy
H0 . 0. H0 ! 0 as a ! a1

c and H0 � 0 for a # ac.
This confirms the conclusion �Am	 � 0 ;m [8] (or u �

0) for a # ac and it implies the relation

s2 �
X
i

j
2
i �1 2 m2

i � �
N
2

�1 2 Q�, a # ac .

(8)

The RS solution is stable against replica symmetry
breaking (RSB) for any a, as expected from positive
definiteness of H. Following Ref. [10], we compute
the probability distribution of the strategies, which for
a . ac is bimodal and it assumes the particularly simple
form

P �m� � f�z� 
d�m 2 1� 1 d�m 1 1��

1
z

p
2p
e2�zm�2�2, (9)

with z �
p
a��1 1 Q� (Q taking its saddle point value)

and where f�z� � 
1 2 erf�z�
p

2 ���2 is the fraction of
frozen agents (those who always play one and the same
strategy). Below ac, P �m� is continuous, i.e., f � 0 in
agreement with numerical findings [8].

At the transition the spin susceptibility x �
limb!`b�Q 2 q� diverges as a ! a1

c , and it re-
mains infinite for all a # ac. This is because the ground
state is degenerate in many directions (zero modes) and
an infinitesimal perturbation can cause a finite shift in
the equilibrium values of mi . This implies that in the
long run the dynamics (6) leads to an equilibrium state
which depends on the initial conditions Us,i�t � 0�. The
underconstrained nature of the system is also responsible
1826
for the occurrence of antipersistent effects for a , ac
[8]. The periodic motion in the subspace H � 0 is
probably induced by inertial terms d2Us,i�dt2 which
we have neglected, and which require a more careful
study of dynamical solutions of Eqs. (3) and (4). It is,
however, clear that the amplitude of the excursion of
U11,i�t� 2 U21,i�t� decreases with G, by the smoothing
effect of Eq. (3). When this amplitude becomes of the
same order of 1�G antipersistence is destroyed, which
explains the sudden drop of s2 with G found in Ref. [13].

A natural question arises: Is this state individually opti-
mal, i.e., it is a Nash equilibrium of the game where agents
maximize the expected utility ui � 2as,iA? One way to
find the Nash equilibria is to consider stationary solutions
of the multipopulation replicator dynamics [17]. This takes
the form of an equation for the so-called mixed strategies,
i.e., for the probabilities ps,i with which agent i plays strat-
egy s. In terms of mi � p1,i 2 p2,i , with a little algebra,
these equations [17] read

dmi
dt

� �1 2 m2
i �

≠ui
≠mi

. (10)

Observing that ≠ui�≠mi � 2≠s2�≠mi , we can rewrite
Eq. (10) as a gradient descent dynamics which minimizes
a global function which is exactly the total loss s2 of
agents. Nash equilibria then correspond to the local
minima of s2 in the domain 
21, 1�N . The quadratic form
s2 is not positive definite, which means that there shall be
many local minima and the Nash equilibrium is not unique.
It is easy to see [15] that Nash equilibria are in pure strate-
gies, i.e., m2

i � 1 ;i, which implies s2 � H, by Eq. (7).
A detailed characterization of the Nash equilibria shall be
given elsewhere [15]. The best Nash equilibrium can be
studied applying the replica method to s2 for b ! `.
The multiplicity of Nash equilibria (metastable states)
manifests itself in the occurrence of replica symmetry
breaking for any a . 0 with a nonvanishing s2�N [15].
The simple RS solution, though incorrect, provides a close
lower bound F

�RS�
NE � FID 1

1
2 �1 2 Q� to s2�N for

b ! ` (see Fig. 1). For a . 1�p , we have Q � q � 1
and F

�RS�
NE �b � `� � 
1 2 1�

p
pa �2 positive, whereas

1 � Q , q and F
�RS�
NE � 0 for a , 1�p .

Figure 1 shows that in a Nash equilibrium agents per-
form much better than in the MG. This is the consequence
of the fact that agents do not take into account their impact
on the market (i.e., on Am) when they update the scores
of their strategies by Eq. (4). It is indeed known [18]
that reinforcement-learning dynamics based on Eq. (3) is
closely related to the replicator dynamics and, hence, it
converges to rational expectation outcomes, i.e., to Nash
equilibria. More precisely, Ref. [18] suggests that this oc-
curs if Eq. (4) is replaced with

Ui,s�t 1 1� � Ui,s�t� 1 u
m�t�
i 
s, s2i�t���P . (11)

Now Us,i�t� is proportional to the cumulated payoff that
agent i would have received had she always played strategy
s (with other agents playing what they actually played)
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until time t. As Fig. 1 again shows, this leads to results
which coincide with those of the Nash equilibrium. It is
remarkable that the (relative) difference between Eqs. (4)
and (11) is small, i.e., of order 1�Am  1�

p
N . Yet, it

is not negligible because, when averaged over all states
m, it produces a finite effect, especially for a , ac, and
it effects considerably the nature of the stationary state.
This term has the same origin of the cavity reaction term
in spin glasses [1]. In order to follow Eq. (11), agents
need to know the payoff they would have received for
any strategy s they could have played. That may not be
realistic in complex situations where agents know only the
payoffs they receive and are unable to disentangle their
contribution from G�Am�. However, agents can account
approximately for their impact on the market by adding
a cavity term 1hds,si �t� to Eq. (4) which “rewards” the
strategy si�t� used with respect to those s fi si�t� not used.
The most striking effect of this new term, as discussed
elsewhere [15] in detail, is that for a , ac an infinitesimal
h . 0 is sufficient to cause RSB and to reduce s2�N by
a finite amount.

Thus far, the information m�t� was randomly and in-
dependently drawn at each time t from the distribution
�m � 1�P. In the original version of the MG [3], m is
instead endogenously determined by the collective dynam-
ics of agents: m�t� indeed labels the sequence of the last
M � log2P “minority” signs, i.e., m�t 1 1� � 
2m�t� 1
1�modP if Am�t� . 0, and m�t 1 1� � 
2m�t��modP other-
wise. The idea [3] is that the information refers to the
recent past history of the market, and agents try to guess
trends and patterns in the time evolution of the process
G�Am�t��. We may say that m�t� is endogenous informa-
tion, since it refers to the market itself, as opposed to the
exogenous information case discussed above.

Numerical simulations [9] show that the collective be-
havior of the MG, based on Eq. (4), under endogenous in-
formation is the same as that under exogenous information.
Within our approach, the relevant feature of the dynamics
of m�t� is its stationary state distribution �m. The key point
is that a finite fraction 1 2 f of agents behave stochasti-
cally �m2

i , 1� because Q , 1. As a consequence, Am

has stochastic fluctuations of order
p
N�1 2 Q� which are

of the same order of its average �Am	 
p
H. With en-

dogenous information, these fluctuations of Am induce a
dynamics of m�t� which is ergodic in the sense that typi-
cally each m is visited with a frequency �m � 1�P in the
stationary state [15]. The situation changes completely
when agents follow Eq. (11). Indeed the system con-
verges to a Nash equilibrium where agents play in a de-
terministic way, i.e., m2

i � 1 (or Q � f � 1). The noise
due to the stochastic choice of si by Eq. (3) is totally
suppressed. The system becomes deterministic and the
dynamics of m�t� locks into some periodic orbit. The
ergodicity assumption then breaks down: Only a small
number P̃ ø P of patterns m are visited in the station-
ary state of the system, whereas the others never occur
��m � 0�. This leads to an effective reduction of the
parameter a ! ã � P̃�N , which further diminishes s2.
Numerical simulations show that P̃ ~

p
P which imply

that ã ! 0 in the limit P � aN ! `, i.e., s2�N ! 0.
In summary, we have shown how methods of statistical

physics of disordered systems can successfully be applied
to study models of interacting heterogeneous agents. Our
results extend easily to more general models [15] and,
more importantly, the key ideas can be applied to more
realistic models of financial markets, where hetero-
geneities arise, e.g., from asymmetric information.
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