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Exact Demonstration of Magnetization Plateaus and First-Order Dimer-Néel Phase Transitions
in a Modified Shastry-Sutherland Model for SrCu2���BO3���2
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We study a generalized Shastry-Sutherland model for the material SrCu2�BO3�2. Along a line in the
parameter space, we show rigorously that the model has a first-order phase transition between dimerized
and Néel-ordered ground states. Furthermore, when a magnetic field is applied in the dimerized phase,
magnetization plateaus develop at commensurate values of the magnetization. We also discuss various
aspects of the phase diagram and properties of this model away from this exactly soluble line, which
include gap-closing continuous transitions between dimerized and magnetically ordered phases.

PACS numbers: 75.10.Jm, 64.70.Rh
In recent years, many novel magnetic materials have
been synthesized which exhibit spin-gap behavior. In these
materials the ground state is a spin singlet and there is a
gap to all spin excitations. Such phenomena have long
been studied in quasi-one-dimensional systems, but much
recent interest has arisen from the discovery of quasi-two-
dimensional spin-gap materials CaV4O9 [1], Na2Ti2Sb2O
[2], and SrCu2�BO3�2 [3]. The latter material is particu-
larly interesting in that, by virtue of the crystal geometry,
it is an experimental realization of the Shastry-Sutherland
model [4], for which an exact dimerized singlet eigenstate
can be written down, which for a range of parameters is
the ground state of the model. Among the interesting ex-
perimental findings for SrCu2�BO3�2 are that the system
appears very close to a transition to a Néel phase and it
also shows magnetization plateaus as a function of mag-
netic field [3,5].

Here we consider a generalized Shastry-Sutherland
model, with Hamiltonian
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where the bonds corresponding to interactions J1, J2, and
J3 are shown in Fig. 1. We assume J1 is antiferromagnetic
and can henceforth set J1 to unity. For J3 � 0 the model
reduces to the original Shastry-Sutherland model. It was
noted by Weihong et al. [6] that J3 keeps the dimer state
an exact eigenstate. We find that for J2 � J3, the model
has infinitely many conserved quantities. The total spin on
each J1 bond commutes with H and thus each eigenstate
of the Hamiltonian can be characterized by the number and
position of the triplets present. These triplets then form
a (in general diluted) spin-one Heisenberg model, with
nearest-neighbor interactions on the square lattice. It is
easy to show that this model has three phases at T � 0
with first-order transitions between them. For large nega-
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tive J2 the ground state is a fully polarized ferromagnet,
for large positive J2 the ground state is equivalent to the
Néel ground state of a spin-one Heisenberg model on the
square lattice, which is rigorously known to be ordered [7],
and whose numerical properties are very well established
[8]. In between the ground state is the dimerized Shastry-
Sutherland singlet phase. At the dimer-to-Néel transition
the sublattice magnetization jumps from 0 to about 80% of
the classical value.

Away from the J2 � J3 line, we use symmetry argu-
ments, dimer series expansions [6] together with consid-
erations of the classical limit to discuss the ground-state
phase diagram and properties of this model. The model
with J2 and J3 interchanged can be mapped into the origi-
nal one by interchanging the spins on all J1 bonds. Thus
the phase diagram is symmetric with respect to the J2 � J3
line. We will concentrate our discussion on the region

J J J1 2 3

FIG. 1. The geometry of spins and couplings in the material
SrCu2�BO3�2.
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J2 $ J3. First, let us compare energies of various clas-
sically ordered phases, obtained by a static mean-field cal-
culation, with the energy of the dimer phase to get a first
view of various phases and their boundaries.

The different phases are shown in Fig. 2, with the dimer
phase denoted by D. The magnetically ordered phases are
best described with respect to a rotated lattice where in-
dividual spins have four nearest neighbors (connected by
J2 bonds) [4]. This lattice is topologically equivalent to a
square lattice. On this lattice, in addition to a ferromag-
netic phase (F) and an antiferromagnetic Néel phase (N),
there are columnar (CN and CF) and helical (H) phases.
The two columnar phases are collinear and equivalent to
each other. In the CN phase the spins order antiferromag-
netically along one of the axes and have period four (""##)
in the perpendicular direction. In the CF phase, the spins
are ferromagnetic in one direction and have period four
in the other direction. Classically, the four helical phases
can be mapped onto each other. In the helical phase for
J2 . 2J3 . 0, the helix runs along one of the axes, with
successive spins rotating by an amount 1u as one moves
along that direction [9]. Along the perpendicular direction
the change in spin directions alternates between 1u and
2u. The angle u is nonunique and is one of the solutions
to the equation

cos�p 2 u� �
2�J2 2 J3�

J1 1
p

J2
1 2 24J3�J2 2 J3�

. (2)

Defining x � J2�J1, y � J3�J1, the columnar, helical,
dimer triple point in the classical phase diagram is lo-
cated at xtr � �45 2 4

p
6 ��36 � 0.9778, ytr � 2�9 1

4
p

6 ��36 � 20.5222. The Néel-helical phase boundary
is given by x 1 5y � 1, whereas the asymptotic (x ! `)
phase boundary between the helical and columnar phases
is given by the equation y � 1
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FIG. 2. Phase diagram for the model showing ferromagnetic
(F), Néel (N), columnar (CF and CN ), helical (H), and dimer
(D) phases. See text for discussion of phase boundaries.
In the ferromagnetic and the dimer phases there are no
quantum fluctuations, as the ground states are exact eigen-
states. Hence the phase boundary shown between them is
exact. The ferromagnetic-helical boundary shown by solid
lines in Fig. 2 is also exact, as we have included the quan-
tum corrections to the helical energy. Second-order per-
turbation theory is sufficient for the quantum corrections,
since the pitch angle u vanishes at the boundary. Note that
the dimer-ferromagnetic boundary is first order, whereas
the ferromagnetic-helical boundary is second order. The
other classical phase boundaries are shown by dashed lines.
They leave an oval-like dimer phase in the middle. The
first-order dimer-Néel phase boundary can be determined
quite accurately along J2 � J3 to be at x � 0.429 57�2�,
and has been given in previous numerical studies along
J3 � 0 (and equivalently J2 � 0) [6]. These points are
shown by solid dots, and we connect them smoothly to in-
dicate a first-order dimer-Néel phase boundary.

Actually, it is not evident whether the dimer-Néel phase
boundary along the line J3 � 0 is first or second order,
or even whether there is an intermediate phase between
the two. Albrecht and Mila [9] have argued that there is
an intermediate helical phase between the Néel and dimer
phases. Their Schwinger-boson mean-field treatment leads
to the estimate that the Néel phase extends only down to
x � 0.91, whereas the helical phase exists between 0.61 ,

x , 0.91. On the other hand, using series expansions,
Weihong et al. [6] have argued that the Néel phase extends
down to x � 0.691, at which point there is a first-order
transition to the dimer phase. The finite-size calculations
[5,9] also do not suggest any helical phases. However,
Albrecht and Mila have argued that this is because the
helical phases are not properly accommodated in finite
geometries.

The quantitative validity of Schwinger-boson calcula-
tions is difficult to judge. One generally expects quantum
fluctuations to stabilize collinear phases. And this could
considerably reduce the extent of the helical phases in the
phase diagram. In several spin models, where numerical
calculations have been done, the sublattice magnetization
of the Néel phase goes continuously to zero, and it is sepa-
rated from incommensurate phases by a singlet phase [10].
On general grounds, Ferrer [11] has argued that the Néel
phase must be separated from helicoidal phases by an in-
termediate spin-liquid phase. Thus, it is reasonable to as-
sume that along J3 � 0 there is a direct transition between
dimer and Néel phases.

Along J3 � 0, Weihong et al. estimate that the dimer to
Néel transition happens at J2�J1 � 0.691�6�. Using d-log
Padé approximants to analyze the gap series, we estimate
that it vanishes at J2�J1 � 0.697�2�. Thus, within the
uncertainties of the series analysis, this transition could
be continuous. Around this value of the couplings, the
sublattice magnetization series from the Néel side is also
consistent with zero [6]. The primary reason for believing
that the transition is first order is that the energies for the
1809
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Néel and dimer phases appear to cross at a nonzero angle.
However, if the transition is continuous, then very close to
the transition, the Néel energy curves should change slope
[6]. Thus, given all the numerical evidence, a plausible
conclusion is that the transition is very weakly first order,
though it could also be second order.

Note that J3 , 0 favors triplet hopping thus reducing
the gap while it disfavors the Néel phase. So negative J3
pushes the system toward a continuous transition and it
is natural to expect a continuous transition below the J2
axis in Fig. 2. To explore this possibility, we have de-
veloped series expansions for the triplet excitations in the
dimer phase to 15th order for arbitrary J3�J2 using the
flow equation method [12]. For J3 � 0, the expansion co-
efficients agree with those calculated by Weihong et al.
The unit cell of the lattice contains two dimers, giving rise
to two triplet modes. These modes are almost degenerate
throughout the Brillouin zone and become exactly degen-
erate as q ! 0 due to symmetry. We find that the gap
minimum is always at q equal to zero even as one moves
from the Néel towards the ferromagnetic phase. We use
d-log Padé approximants to calculate the locus of points,
where the triplet gap closes. This contour is also depicted
by a solid line in Fig. 2. It marks a boundary at which
the dimer phase becomes locally unstable, and hence the
dimer phase cannot exist beyond that line. Without study-
ing all eigenstates of our system, it is not possible to say
if some other level crossing transition leads to a differ-
ent ground state before we get to this line. It is plausible
to think that at least parts of this line represent continu-
ous phase transitions between the dimer and magnetically
ordered phases. As seen in Fig. 2, a possible consistent
scenario is that for J3 # 0 but close to J3 � 0, we have
a multicritical point where a second-order transition line
meets a first-order phase boundary.

These continuous phase transitions between the dimer
phase and various magnetic phases are rather unusual.
They are not in the conventional (2 1 1)-dimensional O(3)
universality class as expected for the nonlinear sigma mod-
els [13]. This is evident from the fact that in the dimer
phase, the ground state remains unchanged and hence the
correlation length remains of order unity. In contrast, for
a generic dimerized spin system, the correlation length
gradually grows and diverges as the gap goes to zero [14].
The continuous phase transition, here, is somewhat analo-
gous to the density driven generic phase transitions in the
bosonic Mott insulators [15].

However, there are some important differences. Unlike
the case of bosonic Mott insulators, the spectrum appears
to be linear at the transition. Along the J3 � 0 line, we
estimate that the gap vanishes at x � 0.697�2�, with an
apparent exponent n of 0.45�2�. Different d-log Padé ap-
proximants show remarkable consistency with each other.
Figure 3 shows the spectrum, in the reduced Brillouin
zone, at the transition. Different ways of analyzing the
series all point to a finite spin-wave velocity and a linear
1810
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FIG. 3. The triplet spectrum along the J3 � 0 line at x �
0.697, where the gap vanishes.

spectrum. These results suggest that this transition belongs
to a new universality class [16].

With our present calculations we cannot study the tran-
sitions from the ordered side and thus cannot establish the
full nature of these phase transitions, nor can we say any-
thing about the stability of columnar and helical phases in
the overall phase diagram. Quantum fluctuations can lead
to additional singlet (spin-gap) phases between the Néel
and the helical phases and possibly eliminate helical phases
altogether from the Néel side of the phase diagram. These
Néel-to-singlet phase transitions should be similar to those
found in the J1-J2 square-lattice Heisenberg model [17].

When a magnetic field is applied to the dimer ground
state along the special line J2 � J3, the resulting magne-
tization is shown in Fig. 4. The triplet excitations, aligned
by the field, have no dispersion, but a nearest-neighbor
repulsion. Thus they form a simple Wigner crystal
(or a bosonic Mott insulator) at one-half the saturation
magnetization. If we add an additional weak antiferro-
magnetic coupling between neighboring horizontal J1
bonds (and similarly neighboring vertical J1 bonds) of
the form J4� �S1 1 �S2� ? � �S3 1 �S4�, the triplets remain

J1 J +4JJ1+4J4 2 J1+4J2+4J41
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FIG. 4. Magnetization as a function of magnetic field. Note
that the plateaus are valid for J4 , J2 , 0.43J1.
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dispersionless but they now have an additional second-
neighbor repulsion. This leads to additional Wigner
crystal phases at one and three quarter fillings and hence
plateaus in the magnetization at one and three quarters of
the saturation value. In Fig. 4, we also show the ordering
pattern of the Wigner crystal on different plateaus by
showing four J1 bonds. A line denotes a (Sz � 1) triplet
on the bond, whereas a circle denotes a singlet.

As we move away from the J2 � J3 line, the triplet
develops dispersion. It is useful to think of the prob-
lem in terms of the Bose-Hubbard model [18], with the
(Sz � 1) triplet representing hard-core bosons. These
bosons have a strong nearest-neighbor repulsion and a
weak diagonal (second-neighbor) and further-range hop-
ping. At half filling, the strong repulsion will clearly lead
to a Wigner crystal and hence the magnetization plateaus
will remain. However, the transition between the magne-
tization plateaus may now be second order. Indications
of such plateaus also exist in the finite size calculations of
Miyahara and Ueda for J3 � 0 [5]. However, due to the fi-
nite size, all plateaus appear discontinuously in their study.
The question of whether there will be additional magneti-
zation plateaus at other rational fillings perhaps including
valence bond states, as in one dimension [19], deserves
further attention.

We now comment on the materials: One would naively
expect the SrCu2�BO3�2 system to be close to J3 � 0,
a limit that has been considered by other authors [5,6].
The ratio of J2 to J1 has been placed in the literature [5]
close to the dimer-to-Néel transition. Even though this
transition may be first order, it would be very weakly so,
due to the vicinity of the multicritical point. In this sense,
this material may allow us to study a special quantum
critical point, not the generic Néel to singlet quantum phase
transition. However, this transition may be unstable to
the generic O(3) transition, when the special eigenstate of
Shastry and Sutherland is not a true eigenstate due to some
small perturbations. It would be interesting to study this
crossover theoretically. An interesting problem could be
the instability of these special transitions due to spin-lattice
couplings.

Magnetization plateaus have been observed in the ma-
terial at one eighth and one quarter of the saturation mag-
netization. The exactly soluble model suggests that these
phases may be regarded as simple Wigner crystals of local
triplets. The question of whether the models away from
J2 � J3 will have magnetization plateaus at other rational
fractions, or whether other couplings such as J4 are needed
for this, deserves further attention.
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