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Andreev Reflection in Strong Magnetic Fields
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We have studied the interplay of Andreev reflection and cyclotron motion of quasiparticles at a super-
conductor–normal-metal interface with a strong magnetic field applied parallel to the interface. Bound
states are formed due to the confinement introduced by both the external magnetic field and the super-
conducting gap. These bound states are a coherent superposition of electron and hole edge excitations
similar to those realized in finite quantum-Hall samples. We find the energy spectrum for these Andreev
edge states and calculate transport properties.

PACS numbers: 74.80.Fp, 71.70.Di, 73.20.– r, 73.40.–c
Rapid progress in fabrication techniques has made it
possible to investigate phase-coherent transport in a vari-
ety of mesoscopic conducting devices [1]. In recent years,
the study of hybrid systems consisting of superconductors
in contact with normal metals has continued to attract
considerable interest, mainly because of the novel effects
observed in superconductor-semiconductor microjunc-
tions [2]. Many of the unusual experimental findings
arise due to the phenomenon of Andreev reflection, i.e.,
the (partial) retroreflection of an electron incident on a
superconductor (S)–normal-metal (N) interface as a hole
[3,4]. Phase coherence between the electron and hole
states is maintained during the reflection process. Hence,
coupled-electron-hole (Andreev) bound states [3] having
energies within the superconducting gap are formed in
mesoscopic devices with multiple interfaces, e.g., S-N-S
systems [5], or S-N-I-N-S structures [6]. (I denotes an
insulating barrier.) Recently, measurements of transport
across the interface between a superconductor and a
two-dimensional electron gas (2DEG) were performed
with a strong magnetic field H applied in the direction
perpendicular to the plane of the 2DEG [7]. While the
magnetic field did not exceed the critical field of the super-
conductor, it was still large enough so that the Landau-level
quantization of the electronic motion in the 2DEG was
important [8]. With these experiments, a link has
been established between mesoscopic superconductivity
and quantum-Hall physics [9] which needs theoretical
exploration.

In this Letter, we study a novel kind of Andreev bound
state that is formed at a single S-N interface in a strong
magnetic field [10]. This bound state is a coherent super-
position of an electron and a hole propagating along the
interface in a new type of current-carrying edge state that
is induced by the superconducting pair potential. Andreev
reflection (AR) gives rise to the contribution

GAR �
e2

p h̄

n�X
n�1

Bn (1)

to the small-bias conductance, which we obtained by gen-
eralizing the familiar Büttiker description [11] of trans-
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port in quantum-Hall samples. In Eq. (1), the summation
is over Andreev-bound-state levels that intersect with the
chemical potential, and Bn is the hole probability for a
particular bound-state level. It turns out that n� is twice
the number of orbital Landau levels occupied in the bulk
of the 2DEG, and Bn # 1�2 depends weakly on magnetic
fieldH for an ideal interface but oscillates strongly with H
for a nonideal interface. GAR can be measured directly as
the two-terminal conductance in a S-2DEG-S system [7].
Our treatment in terms of Andreev edge states provides a
clear physical description of transport in such devices and
explains oscillatory features in the conductance that were
observed experimentally [7] and also obtained in previous
numerical studies [12].

Let us start by recalling the classical and quantum-
mechanical descriptions of electron dynamics in an ex-
ternal magnetic field. When considered to be classical
charged particles, bulk-metal electrons execute periodic
cyclotron motion with a frequency vc � eH��mc�. A sur-
face that is parallel to the magnetic field interrupts the cy-
clotron orbits of nearby electrons and forces them to move
in skipping orbits along the surface [13]. Within the more
adequate quantum-mechanical treatment, the kinetic en-
ergy for electronic motion in the plane perpendicular to the
magnetic field is quantized in Landau levels [14] which are
at constant eigenvalues h̄vc�n 1 1�2� for electron states
localized in the bulk but are bent upward in energy for
states localized close to the surface [15]. Applying the
classical picture of cyclotron and skipping orbits to a S-N
interface, one finds that Andreev reflection leads to elec-
trons and holes alternating in skipping orbits along the in-
terface [16]. [See Fig. 1(a).] In what follows, we provide
a full quantum-mechanical description of these alternating
skipping orbits in terms of current-carrying Andreev bound
states. [See Fig. 1(b).]

We now provide details of our calculation. A pla-
nar interface is considered, located at x � 0 between a
semi-infinite region (x , 0) occupied by a type-I super-
conductor and a semi-infinite normal region (x . 0). A
uniform magnetic field is applied in the z direction, which
is screened from the superconducting region due to the
© 2000 The American Physical Society
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FIG. 1. Andreev bound state of an electron (solid lines) and
a hole (dashed lines) at an S-N interface in a magnetic field.
(a) Classical picture of electron and hole alternating in skipping
orbits. (b) The quantum-mechanical analysis finds that both
the electron and the hole occupy Landau-level states that are
extended parallel to the interface.

Meissner effect. Neglecting inhomogeneities in the mag-
netic field due to the existence of a finite penetration layer
[17], we assume an abrupt change of the magnetic-field
strength at the interface: H�x� � HQ�x�, where Q�x� is
Heaviside’s step function. The energy spectrum of An-
dreev bound states at the S-N interface is found by solving
the Bogoliubov–de Gennes (BdG) equation [18],

µ
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∂
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with spatially nonuniform single-electron/hole Hamiltoni-
ans H0,6 and pair potential [19] D�x� � D0Q�2x�. We
introduced the potential Uext�x� � U0d�x� to model scat-
tering at the interface, and allow the effective mass and
the Fermi energy to be different in the superconducting
and normal regions. Choosing the vector potential �A�x� �
xHQ�x�ŷ, we have
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The operator Xpy � py�2sgn�eH��h̄ is the guiding-center
coordinate in the x direction for cyclotron motion of elec-
trons in the normal region, and � �

p
h̄c�jeHj denotes the

magnetic length. Uniformity in the y and z directions sug-
gests the separation ansatz

u�x, y, z� � fX�x�eiyX��2

eikz�
p
LyLz , (4a)

y�x, y, z� � gX�x�eiyX��2

eikz�
p
LyLz . (4b)

The lengths Ly , Lz are the sample sizes in the y and z di-
rections, respectively. Solutions of Eq. (2) for the S-N
junction are found by matching appropriate wave func-
tions that are solutions in the normal and superconduct-
ing regions, respectively [4]. The motion in z direction
can trivially be accounted for by renormalized Fermi ener-
gies ẽ

�N ,S�
F � e

�N ,S�
F 2 h̄2k2��2mN ,S�. Nontrivial match-

ing conditions arise only in the x direction. For fixed
X and jEj , D0, we have to match at x � 0 the wave
function µ

fX
gX

∂
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�

µ
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∂
, (5a)

corresponding to a coherent superposition of an electron
and a hole in the normal region, to that of evanescent
excitations in the superconductor,µ

fX
gX

∂
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� d1
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The parameters g and l6 are defined in the usual way [5].
The functions x´6

�j� solve the familiar one-dimensional
harmonic-oscillator Schrödinger equation,

�2

2

d2x´6

dj2 2

∑
j2

2�2 2
´6

h̄vc

∏
x´6

� 0 , (6)

with eigenvalues ´6 � e
�N�
F 6 E 2 h̄2k2��2mN � and are

assumed to be normalized to unity in the normal region.
Hence, they are proportional to the fundamental solutions
of Eq. (6) that are well behaved for x ! `; these are the
parabolic cylinder functions [20] U�2´6�h̄vc,

p
2 j���.

The matching conditions yield a homogeneous system of
four linear equations for the coefficients a, b, d6 whose
secular equation determines the allowed values of E.

It is straightforward to calculate the probability and
charge currents for any particular Andreev-bound-state
solution of the BdG equation (2) that is labeled by
guiding-center coordinate X and energy E. It turns out
that currents flow parallel to the interface. The total
(integrated) quasiparticle probability current is given by

I
�P�
X �

1
h̄

�2

Ly

≠E
≠X

. (7)

The total charge current can be written as the sum of three
contributions, I

�Q�
X � I

�Q,n�
X 2 I
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X 1 I
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X , where
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Note that I
�Q,n�
X is the current that would flow in an ordinary

quantum-Hall edge state [15], i.e., due to normal reflec-
tion at the interface. The existence of Andreev reflection is
manifested in the contribution 2I

�Q,a�
X to the Hall current; it

is proportional to the hole probability B�X� �
R
x jgX�x�j2.

The part I
�Q,s�
X of the quasiparticle charge current is con-

verted into a supercurrent.
Numerical implementation of the matching procedure

is straightforward. More detailed insight is gained, how-
ever, when considering the limit jXj ø

p
´6��2mNv2

c� for
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which analytical progress can be made. Using an asymp-
totic form for the parabolic cylinder functions [20], the
secular equation can be written as

cos�w1� 1 G�w2� �
2s

s2 1 w2 1 1
E sin�w1�q
D

2
0 2 E2

. (9)

Here we used the Andreev approximation [3] (E, D0 ø

ẽ
�N�
F , ẽ

�S�
F ), and the abbreviations
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G�a� �
�s2 1 w2 2 1� sin�a� 1 2w cos�a�

s2 1 w2 1 1
. (10c)

The variable n � 2ẽ
�N�
F ��h̄vc� coincides with the filling

factor of quantum-Hall physics [9] when the N region is

a 2DEG. The parameter s � �ẽ�S�
F mN��ẽ�N�

F mS��1�2 mea-
sures the Fermi-velocity mismatch for the junction, and
w � �2mNU2

0 ��h̄2ẽ
�N�
F ��1�2 quantifies interface scattering.

We discuss briefly results for two limiting cases [21].
(a) Ideal interface.—In the absence of scattering at the

S-N interface (w � 0) and for perfectly matching Fermi
velocities (s � 1), G�a� vanishes identically. The en-
ergy spectrum is found from solutions of the transcen-

dental equation cot�w1� � E�
q

D
2
0 2 E2. It consists of

several bands, and states within each band are labeled by
their guiding-center quantum number X. It turns out that
a2 � b2 at any energy, and the band dispersion is
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FIG. 2. Andreev-bound-state levels for the ideal S-N inter-
face in a magnetic field, calculated numerically for n � 40 and
D0��h̄vc� � 2 by exactly matching solutions of the BdG equa-
tion for the normal and superconducting regions.
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(b) Nonideal (S-I-N) interface at low energies.—For

E ø min�D0, h̄
q

ẽ
�N�
F ��2mNX2��, the dependence of w2

on E and X can be neglected. We find

E � D0
�2n 1 1�p 6 arccos�G0� 2 2X

q
2mN ẽ

�N�
F �h̄

q 1 pD0��h̄vc�
,

(12)

where G0 � G�pn�2� and q � 2s��s2 1 w2 1 1�. For
s � 1 and w � 0, the spectrum for an ideal interface at
small energies emerges. In the opposite limit of a very
bad interface (s2 1 w2 ! `), we recover the spectrum
of the Landau-level edge states close to a hard wall [15].
In general, G0 oscillates as a function of filling factor n.
Hence, unlike in the ideal case, the bound-state energies of
Eq. (12) vary oscillatory with n. The same is true for the
hole probability B � b2 # 1�2, for which we find

B �
1
2

q2��1 2 G
2
0�

1 1

q
1 2 q2��1 2 G

2
0�

. (13)

The minima in the oscillatory dependence of B on n occur
whenever tan�pn�2� � 2w��1 2 s2 2 w2�.

Results obtained in the approximate analytical treatment
sketched above are expected to be valid only as long as X
is not too large. It turns out, however, that they actually
provide a good description at E � 0 for Andreev levels in-
tersecting with the Fermi energy, which are important for
small-bias transport. In particular, we obtained a nonvan-
ishing dispersion ≠E�≠X close to the interface which leads
to a finite Hall current I

�Q,n�
X 2 I

�Q,a�
X . [See Eqs. (8).] Ob-

viously, no coupling via the pair potential is possible for
electrons and holes with guiding center far away from the
interface, and dispersionless Landau levels are solutions of

FIG. 3. Conductance GAR, calculated according to Eq. (1)
with hole probabilities Bn obtained from the exact numerical
matching procedure. We set D0 � 0.02ẽ

�N�
F and s � 1. The

value of w for each curve is indicated. The inset shows how
the current dI carried by the lower quantum-Hall edge channel
(solid line) is distributed at the left interface. (See text.)
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the BdG equation. However, as the guiding-center coor-
dinate X gets close to the interface, these Landau levels
are bent upward and become Andreev-bound-state levels
for jEj , D0. This is seen in the exact numerical calcula-
tion of the spectrum (Fig. 2), which also provides a crucial
piece of information that is elusive within the approximate
analytical treatment: the number n� of Andreev levels in-
tersecting with the Fermi energy. We find that n� is twice
the integer part of n�2.

We now apply our findings to study transport in
S-2DEG-S structures [7]. In experiment, two S-N inter-
faces are linked by ordinary quantum-Hall edge channels
whose local chemical potentials differ by dm. Generaliz-
ing the Büttiker formalism [11] for edge-channel transport,
the following picture emerges. (See inset of Fig. 3.) From
the lower edge channel, a current dI � dm�e�h� im-
pinges on the left S-N interface. This current divides up
into a part dIk flowing parallel to the interface in Andreev
edge states studied above, and dI� which flows across
the interface. Chirality of edge states (both Andreev and
ordinary) and conservation of quasiparticle probability
current completely determines the current parallel to the
interface to be dIk � �1 2 2Bn�dm�e�h�. The upper
edge channel collects dIk and returns to the right inter-
face, where a similar discussion applies. Hence, the two-
terminal conductance edI��dm in the S-2DEG-S device
equals GAR [given in Eq. (1)]. Using amplitudes ob-
tained from the exact numerical matching procedure,
we determined the filling-factor dependence of GAR
(shown in Fig. 3 for 2 # n # 18 and various values of
w). As anticipated from the approximate analytical result
Bn � 1�2, the ideal interface exhibits almost perfect
conductance steps in units of 2e2�h. For finite scattering
at the interface, oscillations appear in the conductance
whose amplitude increases as the interface quality wors-
ens. However, for certain single values of n, the ideal
conductance is reached even at a bad interface. The
location of minima and maxima in the field dependence
of the conductance can be obtained from our analytical
calculation and compare well with results of previous nu-
merical studies [12] based on a representation in terms of
scattering states.
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