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Metastability and Paramagnetism in Superconducting Mesoscopic Disks
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A projected order parameter is used to calculate not only local minima of the Ginzburg-Landau energy
functional but also saddle points or energy barriers responsible for the metastabilities observed in super-
conducting mesoscopic disks [A. K. Geim et al., Nature (London) 396, 144 (1998)]. We calculate the
local minima magnetization and find the energetic instability points between vortex configurations with
different vorticity. We also find that, for any vorticity, the supercurrent can reverse its flow direction on
decreasing the magnetic field before one vortex can escape.

PACS numbers: 74.60.Ec, 74.76.–w
The interest in understanding the creation and annihi-
lation mechanisms and, in general, the stability of vor-
tices in superfluids has been recently boosted by a series
of technological advances in both mesoscopic supercon-
ductors [1–4] and atomic condensates [5]. Most of the
proposals for the creation of vortices in atomic condensates
face, at the present time, severe technological difficulties.
On the contrary, mesoscopic superconductors in magnetic
fields are already proving to be an ideal scenario where the
detection and even manipulation of vortices at the individ-
ual level are becoming more and more feasible [1–4]. A
good example, although not the only one, of single-vortex
sensitivity can be found in the Hall magnetometry mea-
surements performed on mesoscopic Al disks by Geim
et al. [2,3]. Both field-cooled (FC) and constant tempera-
ture (CT) magnetization measurements provide evidence
of the quantization of the vorticity of the order parameter.

Geim’s experiment sheds light on the controversial
paramagnetic Meissner effect (PME) confirming that the
PME, at least in mesoscopic samples, is linked to a non-
equilibrium magnetic response of the system. When the
system is kept out of equilibrium, it can show paramag-
netic response both in the CT and FC cases, whereas,
as expected, equilibrium measurements always exhibit
diamagnetism. In addition to this, the experiment raises
a number of other fundamental questions concerning the
properties of few-vortex states in mesoscopic systems: (i)
What is the origin of the metastability of a given vortex
state? (ii) Why can metastable states exhibit paramag-
netism? (iii) What is the nature of the instability that
triggers a change in the number of vortices? We anticipate
the answers to these questions. (i) The metastability
results from the sample surface which favors a large
surface superconductivity and opposes both vortex escape
and entrance. This translates into a very stable vorticity
or topological charge, Q, associated with all the local
minima of the energy functional. (ii) On decreasing the
magnetic field, a reversal in the direction of the total
supercurrent flow associated with most local minima
can take place before vortices escape. In general, and in
contrast with recent work, detector effects [6] need not be
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invoked to explain the paramagnetic response. (iii) The
ultimate mechanism responsible for an instability in the
vorticity or change in the number of vortices of the system
is the disappearance of the saddle point separating a local
minimum from a neighboring one with different Q. This
is called energetic instability. We argue below that, either
increasing or decreasing the magnetic field, there seems
to be experimental evidence that this energetic instability
is preempted by another mechanism, either associated
with noise or some other type of fluctuations (thermal or
quantum).

We start from the Ginzburg-Landau functional for the
Gibbs free energy difference between the normal and su-
perconducting states in an external magnetic field H:
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where C�r� is the order parameter or Cooper pair wave
function, h�r� � = 3 A�r�, and a and b are the con-
densation and interaction energy parameters, respectively.
Numerical minimization procedures have been used in the
past [6–8] to find global and even local minima of the
Ginzburg-Landau functional applied to mesoscopic super-
conducting disks. However, saddle points or energy bar-
riers, which are essential for the analysis of the stability
of the local minima, cannot be easily obtained from these
methods. Before going into the details of how to over-
come this problem, a few comments are in order. It is
well known that the magnetic response to an external mag-
netic field of a superconductor varies with its size, geome-
try, and orientation with respect to the field in a nontrivial
way. Type-I superconductors expel the magnetic field be-
low the critical temperature, but, for the largest disks in
Geim’s experiment, the magnetic field can penetrate the
interior [2,3]. Moreover, multiple-vortex structures [7,9],
expected only in type-II superconductors, clearly reflect in
© 2000 The American Physical Society
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the FC measurements [3] (see below). In summary, these
disks behave like type-II superconductors, which makes it
possible, in a range of fields, to consider a uniform mag-
netic induction h�r� � B [9]. Next, we project the order
parameter onto the “lowest Landau level” subspace [9,10]:

C�r� �
X
L

CL
1

�
p

2p
e2iLuFL�r� . (2)

This subspace is spanned by normalized eigenfunctions
of the linearized differential Ginzburg-Landau equations
where L is the angular momentum ($0) and FL�r� is the
associated nodeless function subject to the boundary con-
ditions of zero current through the surface. In this ex-
pansion CL � jCLjeifL are complex coefficients and the
radial unit is the magnetic length � �

p
e�h̄�cB. We are
considering the thickness of the disk to be smaller than the
coherence length so that the system becomes effectively
two dimensional. This expansion has been shown to give
good qualitative as well as quantitative results for the equi-
librium properties at moderately high fields [9].

The central idea in our method for finding generic
stationary solutions of the Ginzburg-Landau functional
is to project the order parameter onto smaller sub-
spaces spanned by a finite number N of eigenfunctions,
�L1, L2, . . . , LN �, where 0 # L1 , L2 , · · · , LN . We
will restrict our discussion to a disk radius R � 5j�0�
which approximately corresponds to the largest disk in
Geim’s experiment [3] [j�0� is the coherence length at
T � 0]. For such a disk size subspaces with dimen-
sion N . 3 do not play any role [9] and the projected
Ginzburg-Landau functional reduces to
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where the Gibbs free energy is expressed in units of
H2

c2V�8p (V being the volume of the disk), eL�B� is
the energy of the quantum state L expressed in units of
h̄vc�2 (vc � e�B�m�c), R is expressed in units of the
coherence length j�T �, and B and H are given in units
of Hc2�T �. The interactions appear in IL�B� �

R
dr rF

4
L,

which can be interpreted as the interaction between
Cooper pairs occupying the same quantum state L, and
ILiLj �B� �

R
dr rF2

Li
F2

Lj
, accounting for the interaction

between Cooper pairs occupying different quantum states.
Interaction terms that depend on the phases of the coeffi-
cients appear when L1 1 L3 � 2L2 [9], but they are not
considered here since these subspaces do not play any role
in our discussion. Stationary solutions of the projected
functional (3) can thus be found analytically with respect
to jCLj and numerically with respect to B.

As we have anticipated, in the expression (3) k does not
take on the bulk nominal value for Al, but an effective one
that takes into account the geometry of the disk. It is very
difficult to estimate this effective value, but the experimen-
tal evidence of the existence of multiple-vortex structures
for the R � 5j�0� disk along with recent detailed numeri-
cal calculations [7] indicate that k * 1. We will consider
k � 1 throughout. The main results of this work are
shown in Fig. 1 which shows the magnetization associated
with all the energetically stable stationary solutions, i.e.,
all the local minima. These local minima are characterized
by a vorticity or topological charge Q which is defined as
the number of times that the phase of the order parameter
winds around 2p as we complete one circumference
moving along the inner surface of the disk. Different
curves correspond to different values of Q. Along
any of these curves the topological charge distributes
itself in a variety of ways. For large Q (Q $ 12), the
local minimum is always a giant vortex with L � Q.
This local minimum is separated from neighboring local
minima with L � Q 1 1 and L � Q 2 1 by saddle
points which appear as energetically unstable stationary
solutions in the subspaces �Q, Q 1 1� and �Q 2 1, Q�, re-
spectively. Figure 2(b) shows an example of the modulus
of the order parameter at the saddle point that separates the
giant vortex L � 9 from the L � 10 close to the high-field
end of the Q � 9 curve. Notice the strong depletion of
the order parameter at an (arbitrary) point on the surface
[11]. Higher-energy saddle points also appear separating
the giant vortex L � Q from other possible local minima
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FIG. 1. CT magnetization curves associated with local minima
of different topological charges Q for a disk radius R � 5j�0�
and k � 1. The equilibrium magnetization is represented by the
thick solid line. Inset: Energy of the local minimum Q � 9
compared to the energy of the saddle points that separate it from
the closest neighboring local minima.
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FIG. 2. Modulus of the order parameter at the saddle points
separating the local minimum (a) �1, 9� from �1, 8� close the
low-field end of the Q � 9 curve and (b) �9� from �10� close
the high-field end of the same curve.

L � Q 1 2, L � Q 2 2, etc., which fully guarantees its
energetic stability. At the low- and high-field ends of the
curve the local minimum L � Q merges with the saddle
points �Q 2 1, Q� and �Q, Q 1 1�, respectively (see, for
instance, the high-field side of the inset in Fig. 1). In
the presence of dissipation the system will be driven to-
ward the neighboring local minimum. (A dynamical analy-
sis [12] of this process would be interesting, but it is
beyond the scope of this work.) For smaller Q (Q , 12) a
giant vortex can be typically found close to the high-field
end of the curve, but, as we move along the curve towards
lower values of H, we cross the critical field where the
multiple vortex solution in the form of a ring, �0, Q�, be-
comes energetically favorable [8,9]. There is no barrier
separating them, and a weak second order phase transi-
tion takes place. Similarly, there are saddle points separat-
ing the solution �0, Q� from the local minima �0, Q 2 1�
and �0, Q 1 1� on neighboring curves. These barriers ap-
pear as stationary solutions in the subspaces �0, Q 2 1, Q�
and �0, Q, Q 1 1�, respectively. There is also a barrier
separating the local minimum �0, Q� from a local mini-
mum �1, Q� which may become energetically favorable as
we move upwards along the curve. There is a saddle point
separating them, which appears as a stationary solution in
the subspace �0, 1, Q�. These saddle points are typically
1 or 2 orders of magnitude smaller than those separat-
ing states with different topological charges, although, at
the energy crossing, they still range from 	50 K (Q � 8)
to 	0.1 K (Q � 11). The experimental temperature is
0.4 K, which means that the system could evolve along
the state �0, Q� in the absence of fluctuations. Otherwise,
the system would experience a weak first order transition
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on crossing the barrier and changing the vortex structure
into a ring with a vortex in the middle [13]. We have cho-
sen this possibility in our plot, although these first order
transitions barely reflect in the magnetization. More struc-
tural changes and more weak first order transitions can take
place as one moves along the curve on decreasing H. At
the low-field end of the curve, the saddle point separat-
ing the local minimum �L1, . . . , Q� from �L1, . . . , Q 2 1�,
i.e., the �L1, . . . , Q 2 1, Q� stationary solution, merges
with the local minimum �L1, . . . , Q� (see, for instance, the
low-field side of the inset in Fig. 1) and the energetic in-
stability sets in. Before reaching the low-field end, as
Fig. 2(a) shows, the superconducting density exhibits a
strong depletion at some point on the surface when cross-
ing the saddle point.

As Fig. 1 shows, the magnetization associated with the
local minima changes sign at some intermediate value of
H (which depends on Q). In other words, the supercurrent
reverses the direction in which it flows. At this point the
height of the vortex escape barrier approaches, typically,
its maximum value (see inset of Fig. 1 where the zero-
magnetization point coincides with the minimum in the
free energy). As already mentioned, these barriers can be
several orders of magnitude the experimental temperature.
Thus, whatever mechanisms may be operating to decrease
the topological charge are unlikely to be efficient enough
to prevent the appearance of the paramagnetic response on
decreasing H. In fact, this is what is observed in the ex-
periment. The sign change in the response occurs approxi-
mately when the dominant eigenfunction in the expansion
of the order parameter, LN � Q, crosses the minimum of
the band structure eL�B� and reverses its group velocity.
As was shown in Refs. [9,10], the minimum in the band
structure comes about due to the boundary conditions im-
posed on the components of the order parameter. Notice
that detector size effects need not be invoked [6] to account
for the paramagnetic response.

The experimental magnetization curves [3] are, to a large
extent, similar to the theoretical ones for small Q. How-
ever, for large Q, where our method is expected to be more
reliable, there are significant discrepancies. The deriva-
tive with respect to the field of the magnetization curves
changes sign close to the low- and high-field ends of the
curves. Furthermore, neighboring curves even get to cross
each other. This is never seen in the experiment [3] which
seems to indicate that a vortex can escape or enter the disk
before the saddle point or barrier disappears. Since thermal
activation is efficient only very close to both ends of the
curves, either experimental noise or quantum fluctuations
may be ultimately responsible for the vorticity change.

Even if the energetic instability on the diamagnetic
side is preempted by some of the relaxation processes
mentioned above, the magnetization associated with the
global minimum (thick line in Fig. 1) is not likely to be
observed for increasing field without intentional relaxa-
tion. It has been suggested in the literature that surface
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FIG. 3. (a) FC magnetization for a disk of radius R � 5j�0�
and k � 1 at different values of the external magnetic field.
Each curve corresponds to the topological charge Qn of the giant
vortex that nucleates at the highest critical temperature. (b) The
same as in (a), but for a topological charge Qn 1 1.

roughness is responsible for the destruction of the saddle
points associated with the surface barrier. The saddle
points preventing the escape or entrance of vortices have
the same origin, and surface roughness should affect them
similarly. Thus, in our view, there are no reasons for the
system to follow the ground state on increasing H, and it
is expected to continue along a given curve until the onset
of the energetic instability or until vortex entrance rates
increase to typical measurement times.

Finally, we comment on the FC measurements. The
current understanding of the FC results is summarized
in a work by Moshchalkov et al. [14] which attributes
the FC paramagnetic response to a flux-compression phe-
nomenon. Figure 3 shows the magnetization as a function
of temperature for different values of the magnetic field.
The usual phenomenological temperature scaling of the
parameters in the Ginzburg-Landau functional (1) has been
considered [14]. Each curve in Fig. 3(a) corresponds to the
topological charge Qn of the giant vortex that nucleates at
the highest possible critical temperature for each chosen
field. Qn is maintained along the different curves down
to T � 0 due to the presence of the energy barriers dis-
cussed above which prevent the change of vorticity. The
response is always diamagnetic in clear contrast with the
FC data. Figure 3(b) shows magnetization curves for a
topological charge Qn 1 1. Alternating paramagnetic and
diamagnetic behaviors are obtained as a function of H and
a low-temperature saturation of the paramagnetic response
occurs due to explosion of the giant vortex as suggested by
Moshchalkov et al. [14]. This behavior is in remarkable
agreement with the FC data [3] which seem to suggest that
either thermal fluctuations close to the critical temperature
or surface roughness favor the nucleation of giant vortices
with a higher topological charge than that obtained in our
calculations [15]. Notice again that, in our approach, the
magnetic field is uniform in space which suggests that flux
compression [3,14] is not essential as far as the existence of
paramagnetism is concerned. Still, the origin of the PME
in the FC measurements of Ref. [3] remains an open issue.

In conclusion, we have addressed some fundamental
questions posed by the experiment of Geim et al. [3].
Saddle points or barriers of the Ginzburg-Landau func-
tional have been found based on a projection technique.
This has allowed us to obtain metastable magnetization
curves and to gain insight into the controversial para-
magnetic response in both FC and CT magnetization
measurements.
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