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Closed Formulas for Tunneling Time in Superlattices
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New formulas for an exact and simple evaluation of the phase time associated with the passage of
electrons or photons through a finite superlattice are derived. This time, named here the superlattice-
tunneling time tn, exhibits a resonant-band structure or a superluminal phase time behavior depending on
whether the particle’s energy lies in a band or a gap. In the band, tn remains larger than the free motion
time tf , while in the gap it can be less than tf (with strong substrate effects), but it is larger than the
single-cell phase time t1. Extremely good agreements with optical-pulse and superluminal delay times
measured by Spielmann et al. and Steinberg et al. are found, including the superlattice-tunneling-time
limit and the substrate effects. Conditions for measurements of earlier electron arrival are also analyzed.

PACS numbers: 73.40.Gk, 42.50.Dv, 78.66.–w, 78.20.Ci
In the last several years enlightening and accurate mea-
surements of single-photon and optical-pulse delay times,
in the photonic band gap of multilayer media [1,2], have
stimulated interest and controversy on the elusive concept
of tunneling time. Earlier evanescent electromagnetic-
wave experiments [3–5], new “tunneling time” definitions
[6–9], and review papers [10,11] contributed significantly
to maturing the discussion on this subject. Even though
the debate on the tunneling time remains, the single-
photon superluminal tunneling reported by Steinberg et al.
[1] upholds the belief that tunneling time is well described
by the “phase time” defined [12,13] as the frequency
derivative of the transmission amplitude’s phase ut . Spiel-
man et al. [2] reported other evidences on superluminal
delay times with appealing indications of the existence of
a tunneling-time limit, that would be reached by increas-
ing the number of cells in the superlattice (see Fig. 1).
An important characteristic of this classical two-pulse
interference experiment is the negligible distortion of
wave packets in a broad photonic band gap. Their theo-
retical calculations (open triangles in Fig. 1) are, however,
remarkably different from the measured delay times.

If we write the phase time as

t � jtj22�tr≠ti�≠v 2 ti≠tr�≠v� , (1)

where tr and ti are the real and imaginary parts of the
transmission amplitude t, it is clear that very accurate ex-
perimental measurements and very precise transmission-
amplitude calculations are required to verify t when a
particle’s energy lies in the gap where the transmission
coefficient tends to zero. In the absence of analytic and
rigorous evaluations, numerical or approximated theo-
retical calculations obscure this subtle and controversial
issue. In this Letter, I show that the phase time associated
with the passage (tunneling or no tunneling) of electrons
or photons through a finite superlattice is a relevant
quantity, which I calculate explicitly and compare with
existing experimental data and denote it as the superlattice-
tunneling (or transmission) time (STT) tn.
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The transmitted wave packet’s distortion is a conse-
quence rather than a mechanism of the tunneling (or trans-
mission) time behavior as a function of the energy E �
h̄v. In the transfer matrix approach to the passage of wave
packets through a 1D scattering region extending from za

to zb , the transmitted wave packet at �z, t� with z $ zb

and t $ tb is given by

ct�z, t� �
Z

Akjt�k�jei�kz2k�zb2za�1ut �k�2vt� dk , (2)

where t�k� � jt�k�jeiut�k� is the k-component transmission
amplitude and t � tb 2 ta � ≠ut�k��≠v is its phase
time. Different k components have different phase times
and transmission probabilities. The wave packet reshaping
results then, basically, from these energy dependences.

In a superlattice, the phase interference phenomena
determine strongly the energy behavior of the scattering
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FIG. 1. Calculated and measured optical-pulse tunneling time
tn through �l�4� superlattice L�HL�n with different values of
n. The calculated times of the present work (full circles) are
compared with those measured and calculated by Spielmann
et al. (open circles and open triangles, respectively). The free
motion time tf and the tunneling-time limit t` are also shown.
© 2000 The American Physical Society
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amplitudes. New and rigorous formulas, obtained recently
[14] in the theory of finite periodic systems, are crucial to
deduce analytic expressions for the scattering-amplitude
phases and, hence, for the superlattice phase times tn of
massive and nonmassive particles. Applying these times
to the previously mentioned experimental cases, extremely
good agreement is found with the experimental delay
time measurements (see Fig. 1), and interesting energy-
dependent properties, including the STT limit, emerge.
Optimum conditions for massive particle superlattice-
tunneling time measurements are also discussed below.

If we have a superlattice, say �AB�n, the single-cell �AB�
transfer matrix M (assuming time-reversal invariance) has
the general structure

M �

µ
a b

b� a�

∂
, (3)

and the transmission amplitude tn through the whole su-
perlattice �AB�n is given by [14]

tn �
t�

t�pn 2 pn21
, (4)

where t �� tr 1 iti � �a��21� is the single-cell trans-
mission amplitude and pn�ar� is the Chebyshev polyno-
mial of order n evaluated at the real part of a (� ar 1

iai). All the information on the fundamental and intri-
cate phase interference phenomena is carried out by these
polynomials, to which order is related the superlattice size
l � nlc (with lc the unit-cell length). Given the transmis-
sion amplitude, a straightforward calculation leads to the
superlattice-tunneling (or transmission) time

tn �
h̄

�pn 2 arpn21�2 1 �aipn21�2

3

µ
Ar

dar

dE
1 Ai

dai

dE

∂
, (5)

with

Ar �
ai

1 2 a2
r

��arpn21 1 npn22�pn 2 �n 1 a2
r �p2

n21� ,

(6)

and

Ai � �pn 2 arpn21�pn21 . (7)

To evaluate this time, all we need is the single-cell transfer
matrix element a and its energy derivative. If more than
one propagating mode is present, t is a matrix and we
will have different phase times tij strongly modified by
channels mixing [14,15].

Before applying Eq. (5) to evaluate massive and non-
massive particle’s phase times through specific systems,
let us briefly mention the stunning optical-pulse STT limit,
which occurs as the number of cells increases and a gap
is built. This and Hartmann’s prediction [16] are related
properties but not exactly the same thing. The experimen-
tal behavior in Ref. [2] leads us naturally to ask whether
a limit as n ! ` exists for tn. The answer is yes. After
doing a little algebra we obtain

t` �
t1

1 2 T
1

T
1 2 T

∑
ai

2�1 2 a2
r �

dar

dE
2

1
2ar

dai

dE

∏
,

(8)

where t1 and T are the single-cell tunneling time and trans-
mission probability, respectively. It is worth noticing that
tn �t` already for n of the order of 10 (see, for example,
Figs. 1 and 2 where this occurs for n � 8), while the trans-
mission probability approaches zero. For typical semicon-
ductor superlattices the single-cell electron transmission
probability T in the low energy gaps is close to zero, thus
t` � t1 � 10213 s. On the other hand, optical l�4 su-
perlattices are characterized by a wide low-frequency gap
where T is close to 1, and hence t` . t1 � 1 fs. Equa-
tions (5) and (8) are the main results of this Letter. Their
predictions, shown below, agree well with the experimen-
tal results.

In order to illustrate the use of the previous formulas,
two types of systems will be considered: a mass particle
moving through a superlattice A�BA�n made of GaAs (A)
and AlxGa12xAs (B) and photons moving through dielec-
tric mirrors. In the latter case we shall consider the l�4
superlattices �HL�nH�substrateL� and L�HL�n made of
titanium oxide �H� and silica �L� layers as in Refs. [1] and
[2], respectively.

We shall start calculating the electron STT through the
superlattice �A1�2BA1�2�n contained between two GaAs
thick layers. In this case, Eq. (5) can be directly applied.
All we need is the single-cell A1�2BA1�2 transfer matrix or
just its well-known matrix element

a � eikdA

µ
coshkdB 1 i

k2 2 k2

2kk
sinhkdB

∂
, (9)

FIG. 2. The electron tunneling time tn (heavy line) follows
the resonant behavior of dimensionless transmission probability
Tn (light line) as a function of the energy (in eV). In this figure
the superlattice �Al0.3Ga0.7As�GaAs�n parameters are used (see
text). In the allowed energy band tn is larger than the free
motion time tf (dashed curve), while in the gaps tn , tf but
is larger than the single-cell tunneling time t1 (dotted curve).
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where

k �

s
2m�

A

h̄2 E , and k �

s
2m�

B

h̄2 �Vo 2 E� . (10)

Some relevant physical quantities are plotted in Fig. 2 for
V0 � 0.23 eV, electron effective masses m�

B � 0.1me and
m�

A � 0.067me, and barrier and valley widths dB � 3 nm
and dA � 10 nm. In this figure, times are given in units
of 10213 s. The free motion time tf � nlcme�h̄k and the
single-barrier phase time t1 are shown together with the
transmission coefficient Tn � jtnj

2 and the STT tn, for
n � 8. A band structure is apparent for both the trans-
mission coefficient Tn and the time tn. In the gaps, Tn

tends to zero and tn approaches t1, which behaves as a
lower bound. In the band region, on the other hand, the
STT exhibits a resonant behavior whose lower bound is
the free motion time tf . Up to this point, it is clear that
the particle’s dwelling time in the scatterer region grows
as its energy approaches any allowed energy level. On the
contrary, in the forbidden energy regions the particle runs
away faster, reflecting the evanescent behavior and the lack
of hospitality in the potential region.

To measure earlier electron arrival times, a two barrier
structure [i.e., the heterostructure substrateA�BA�n with
n � 2] might be an appropriate system. Although the dif-
ference tf 2 t2 is slightly less than tf 2 tn (for n $ 3),
the transmission probability T2 is much larger than Tn. On
the other hand, for fixed barrier height and width, t2 and
the subband level density increase with dA while T2 di-
minishes. If we choose dB � 3 nm and dA � 15 nm for
AlxGa12xAs and GaAs, respectively, and the remaining
parameters are as mentioned before, earlier arrival times
of about 20 fs and transmission coefficients of the order
of 3% are predicted for incoming electron energies around
E � 110 meV (see Fig. 3). In the presence of an electric
force F, the STT behavior of Fig. 3 remains almost equal,
except for some important effects for energies between
V0 2 F�ds 1 2dB 1 dA� and V0 2 F�ds 1 dB� and an

FIG. 3. Two barrier electron tunneling time t2 (heavy line)
plotted together with the dimensionless transmission probabil-
ity T2 (light line), through the GaAs�Al0.3Ga0.7As�GaAs�2 het-
erostructure, and the free motion time tf (dashed curve) as
functions of the incident-particle energy (in eV).
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origin displacement by approximately dsF (assuming bal-
listic motion and substrate width ds).

Concerning the transmission of photons studied in
Ref. [1], some care has to be taken since photons move
from air to the dielectric mirror and again to air. To deal
with the system of Ref. [1] one has to include the coupling
transfer matrices

MaH �
1

2nH

µ eikHlL 0
0 e2ikHlL

∂ µ 1 1 nH 1 2 nH

1 2 nH 1 1 nH

∂
,

and MHa � MLsaMHLs . Here

MHLs �
1

2nL

µ nH 1 nL nH 2 nL

nH 2 nL nH 1 nL

∂ µ eikHlR 0
0 e2ikHlR

∂
,

and MLsa is similar to MHLs but with lR , nH , and nL

replaced by ls(the substrate’s width), nL, and 1, respec-
tively. lL�R� is the left(right) H-layer width, nL � 1.41
and nH � 2.22 are the refractive indices, and ki � vni�c
(i � H, L). The whole system’s HlL�H1�2LH1�2�nHlR Ls

transfer matrix is then

eMn � MHaMnMaH � MHa

µ
an bn

b�
n a�

n

∂
MaH (11)

�

√ ean
ebneb�

n ea�
n

!
, (12)

where Mn is the superlattice transfer matrix with elements
[15]

an � pn 2 a�pn21 ,

bn � bpn21 .
(13)

As mentioned before, a and b are the single-cell transfer
matrix elements and pn the Chebyshev polynomial evalu-
ated at the real part of a [see Eq. (3)]. Although the
modified transfer matrix element ean (� eanr 1 i eani) dif-
fers from an, it is still a simple function of the same Cheby-
shev polynomials pn. In the particular case of Ref. [1], the
single-cell transfer matrix elements (for normal incidence)
are the well-known functions

a �
eikHdH

4nHnL
�eikLdL �nH 1 nL�2 2 e2ikLdL�nH 2 nL�2� ,

b � i
n2

H 2 n2
L

2nHnL
sinkLdL � ibi .

(14)

Using the parameter values corresponding to the super-
lattice mirror �HL�nH of Ref. [1] with ls � l�2, we ob-
tain the STT behavior shown in Fig. 4. As in Eq. (5),
the only frequency derivatives that one has to evaluate are
those of the single-cell functions ar and ai . The STT is an
extremely sensitive quantity to the substrate-layer width ls.
To show this we plot (see Fig. 5) tf and etn as functions of
ls. For ls � ml�4 (with m even) etn , tf , while for odd
multiples etn . tf . Intermediate values are of course pos-

sible. The transmission coefficient eTn and the time etn, for
n � 5, shown in Fig. 4, again exhibit a resonant behavior.
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FIG. 4. Electromagnetic plane wave tunneling time etn (heavy
line) and dimensionless transmission probability eTn (light line)
through the �l�4� superlattices H�LH�n�substrate�, made of
silica �L� and titanium oxide �H�, are plotted as functions of the
wavelength l. As in Fig. 2, etn has a resonant and band structure
behavior. In the gaps etn , tf and is larger than the single-cell
tunneling time t1.

In the wide gap region, eTn goes to zero and etn again ap-
proaches the STT limit � t1��1 2 T � as n increases. In
the allowed band region, a resonant STT has the free mo-
tion time tf as its lower bound. For l � 702 nm a STT
of 2.3 fs is predicted while the measured value is approxi-
mately 2.1 6 0.2 fs. Transmission times for other inci-
dence angles compare well with the measured ones [15].
At variance with the massive particle’s STT, the free mo-
tion time tf and the single-cell transmission time et1 are
now constant and the number of resonances does not de-
pend on the number of wells but on the number of layers.

Let us now consider the parameter values corresponding
to the system �air� �substrateL� �HL�n�air� of Ref. [2],
with incidence angle ui � 20±. In this case, there is also
a wide gap with practically the same k-component phase
time and low packet distortion. The predictions, shown in
Fig. 1, fall within the experimental error bars for the first

FIG. 5. To show the substrate width ls effect on the
tunneling time, we consider both a �l�4� superlattice
H�LH�n�substrateL� with tunneling time etn and a system
with tunneling time tf where the superlattice is replaced by
air. l � 702 ns and is kept fixed. At 4ls�l � m even(odd) etn
reaches a minimum (maximum) and it is ,tf (.tf ).
four points and differ from the fifth point. This is an impor-
tant difference that has to be clarified. While the predicted
STT grows monotonically as a function of n towards the
STT limit t`, the fifth experimental point implies a reduc-
tion in the STT for larger n. If that was true, the transmis-
sion time would eventually become zero by increasing the
superlattice size. I believe that new experiments have to
be done in order to clarify this issue.

In this Letter, the transfer matrix approach for finite peri-
odic systems has been used to derive analytic and rigorous
expressions for the evaluation of the superlattice-tunneling
(or transmission) time tn and the striking STT limit t` �
t1��1 2 T �. Various experimentally observed evidences
and properties of superlumina passage times through mul-
tilayer optical systems are well described. Interesting en-
ergy dependences are found. The superlattice-tunneling
time tn exhibits a clear resonant-band structure behavior,
and small times can be expected only in the gap. In the
band region, the time tn is always larger than the free mo-
tion time tf , and in the gap tn is larger than the single-cell
time t1. As for the wave packets, it is easy to understand
the reshaping phenomena based on the k-component STT
behavior. In general, wave packets with frequency com-
ponents having different passage times will, obviously, be
distorted when transmitted and reflected [15] . By ana-
lyzing the STT behavior one can also find low distortion
conditions.
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