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Quantum Dots with Even Number of Electrons: Kondo Effect in a Finite Magnetic Field
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We show that the Kondo effect can be induced by an external magnetic field in quantum dots with
an even number of electrons. If the Zeeman energy B is close to the single-particle level spacing D in
the dot, the scattering of the conduction electrons from the dot is dominated by an anisotropic exchange
interaction. A Kondo resonance then occurs despite the fact that B exceeds by far the Kondo temperature
TK . As a result, at low temperatures T ø TK the differential conductance approaches a unitary limit
GK � e2�p h̄. A possible experimental realization of this effect is discussed.

PACS numbers: 72.15.Qm, 73.23.Hk, 73.40.Gk, 85.30.Vw
Zero-bias anomaly of tunneling conductance, discov-
ered in the early 1960s, has been explained in terms of
scattering by magnetic impurities located in the insulat-
ing layer of the tunneling junction [1], in close analogy
with the Kondo explanation of the resistivity minimum in
metals [2]. Recently, this problem gained renewed atten-
tion following theoretical predictions that very similar ef-
fects should be detectable in tunneling of electrons through
small semiconductor quantum dots [3,4]. It was indeed
observed in quantum dots formed in GaAs�AlGaAs het-
erostructures by the gate-depletion technique [5–8].

In a quantum dot, a finite number N of electrons is con-
fined in a small region of space. The electrostatic potential
of the dot can be tuned with the help of a capacitively cou-
pled gate electrode. By varying the gate voltage, one can
switch between Coulomb blockade valleys, where an addi-
tion or removal of a single electron to the dot is associated
with large charging energy Ec. In this regime, fluctuations
of charge are suppressed, and N is a well defined integer,
either even or odd. Transport, however, is still possible by
means of virtual transitions via excited states of the dot
(this mechanism is known as cotunneling). If N � odd,
the dot has nonzero total spin, and the cotunneling can be
viewed as a magnetic exchange. The spin-flip processes
make a dominant contribution GK � e2�p h̄ to the dif-
ferential conductance at low temperature T ø TK , when
the scattering cross section approaches the unitary limit
[3]. At finite values of the source-drain voltage eV ¿ TK
the nonequilibrium-induced decoherence cuts off the se-
quence of the spin-flip events that lead to the formation
of the Kondo resonance [4] in a similar way as thermal
fluctuations do. Therefore, the width of the peak of differ-
ential conductance at zero bias is of the order of TK . If a
magnetic field is applied to the system, the zero-bias peak
splits into two peaks at eV � 6B, where B � gmBBk is
the Zeeman energy [9]. These peaks are observable even at
eV ,B ¿ TK [4,6,7]. However, even at T � 0, the value
of the differential conductance at the peaks never reaches
the unitary limit [4,10,11].
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For N � even this consideration is inapplicable, since
in the ground state of the spin-degenerate quantum dot
all single-particle energy levels are occupied by pairs of
electrons with opposite spins, and the total spin of the dot
is zero. Therefore, the Kondo physics is not expected to
emerge in this case. Yet, as we demonstrate below, quan-
tum dots with N � even subject to an external magnetic
field may exhibit a generic Kondo effect, which shows up
at a certain value of the Zeeman energy B ¿ TK .

In order to elucidate this peculiar scenario, let us re-
call that in quantum dots charge and spin excitations are
controlled by two energy scales (Ec and D, respectively),
which typically differ by an order of magnitude [12]. This
distinction enables one to change the spin state of the dot
leaving its charge state intact. If N � even, the ground
state of the dot has spin S � 0. The lowest excited state
with nonzero spin S � 1 has energy D (see Fig. 1). If an
external magnetic field is now applied, these two states are
affected quite differently. In particular, for B � D, they
become degenerate (see Fig. 2). Since they differ by flip-
ping the spin of a single electron in the dot, this system is a
natural candidate for realizing the Kondo effect. Moreover,

FIG. 1. (a) The spinless ground state of the dot with N �
even electrons. (b) Excited state which has Sz � 1. States
(a) and (b) differ by adding a spin-down or spin-up electron
accordingly to the state jV� of N 2 1 electrons in the dot,
shown at (c). The states (a) and (b) are denoted as j #� and j "�
in (5).
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FIG. 2. Low-energy states of a spin-degenerate quantum dot
in magnetic field.

this Kondo effect is unique in a sense that the presence of
a large magnetic field B � D ¿ TK is a necessary condi-
tion for its very occurrence.

To check this concept we consider a quantum dot such
as the one studied in [5–8]. For simplicity of presentation
we assume, for the moment, that it is attached to a single
metallic electrode. An appropriate Hamiltonian for mod-
eling it is then

H � H0 1 Hd 1 HT . (1)

Here the Hamiltonian of the lead electrons is

H0 �
X
ks

ekc
y
kscks , (2)

where ek is the energy measured from the Fermi level
eF and the fermion operator cks annihilates electron of
momentum k and spin projection s. The dot Hamiltonian
Hd is diagonal in the space containing just the two single-
particle states whose energy levels are closest to eF . (Note
that the Anderson model description of the N � odd case
[3,4,10] is based on a similar approximation, which is valid
if the transparency of the tunneling junctions is small [13].)
Thus,

Hd �
X
ps

1
2

�pD 2 sB�dypsdps 1 Ec�N 2 2�2, (3)

where N �
P
ps d

y
psdps , p � 61 refers to single-

particle energy levels in the dot, and s � 61 stands for
up and down spin. In writing the interaction term in (3)
we assumed that the system is tuned to the middle of the
N � even valley of the Coulomb blockade. Note also
that an in-plane magnetic field has no influence on the
two-dimensional electron gas in the lead, provided that
B ø eF (which is the case for B � D) [9]. The coupling
between the dot and the electron gas is described by the
tunneling Hamiltonian

HT �
X
ps

tpcy
sdps 1 H.c., cs �

1
p
L

X
k

cks ,

(4)
where L is a normalization constant, and we have allowed
an explicit dependence of the tunneling amplitudes on p.
The two states of the dot which become degenerate at
B � D are

j "� � d
y
11"jV�, j #� � d

y
21#jV� , (5)

with jV� � d
y
21"j0�, in which j0� is the ground state of

the dot with N 2 2 electrons. It is useful to define spin
operators built on the states (5):

Sz �
1
2

�j "� �" j 2 j #� �# j�,

S1 � Sx 1 iSy � j "� �# j .

These operators act on different spin states of the dot.
Since Ec ¿ D, virtual charge excitations to states with
N fi 2 can be integrated out by means of a Schrieffer-Wolf
transformation. The resulting effective Hamiltonian now
reads

H � H0 1 Hp 1 Hex . (6)

It contains a potential scattering part

Hp � Ucr 1 Uss
z , (7)

and an anisotropic exchange interaction

Hex � JzcrSz 1 JzsszSz 1
1
2
J��s1S2 1 s2S1� .

(8)

The operators appearing in (7) and (8) act on the conduc-
tion electrons at the site of the dot. They are defined as

r � 1
2 �r" 1 r#�, sz � 1

2 �r" 2 r#�,

rs � cy
scs , s1 � c

y
" c#, s2 � c

y
# c" .

(9)

The various coefficients in (8) are Jzs � 2Us � 2�t211 1

t221��Ec, J� � 4t11t21�Ec, and Jzc � 22Uc � 2�t211 2

t221��Ec. It should be noticed that the value of Uc depends
strongly on the choice of intermediate states entering the
calculation. Including single-particle energy levels other
than those two closest to eF results in some �Ec�D addi-
tional contributions of the same order to Uc. In addition
to the operators listed in (7) and (8) there also appears a
term multiplying Sz . It represents a correction to the level
spacing D, which does not lift the degeneracy of the states
(5) if B is properly tuned (we assume that tunneling alone
does not change the symmetry of the dot ground state).

Inspecting the Hamiltonian (6)–(8) we notice that, un-
like the situation encountered in standard (bulk) Kondo
effect, the charge and spin degrees of freedom are not
separated. Rather, they are coupled through the term
JzcrSz . In addition, the potential scattering component Hp

contains a term Uss
z in the spin channel. The main effect

of Hp is to introduce small spin-dependent corrections to
the density of states [14]. Specifically, denoting by ns the
density of states of electrons with spin s, and by n0 the
1757



VOLUME 84, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 21 FEBRUARY 2000
(unperturbed) density of states at the Fermi level, it is suf-
ficient to replace the weakly energy-dependent functions
ns by their values at eF ,

ns �
n0

1 1 �pn0Us�2 , Us �
1
2

�Uc 1 sUs� .

(10)

The effect of the remaining exchange interaction Hex can
be studied with the help of the standard scaling procedure,
which results in a familiar set of equations [15]

dJ z

d lnD
� 2�J ��2,

dJ �

d lnD
� 2J zJ �, (11)

for the dimensionless coupling constants

J z � �J z
" 1 J

z
# ��2 ,

J z
s � ns�Jzs 1 sJzc �, J � �

p
n"n# J

�. (12)

Since initially J z � n0Jzs . 0, the solution of Eqs. (11)
flow to the strong coupling fixed point J z

s ,J � ! `.
Experimentally, the properties of this system can be

probed by means of transport spectroscopy [5–8], when
the dot is connected by tunneling junctions to the source
and drain electrodes. To describe this situation, we
add an additional index q (q � R�L for the right�left
electrodes) to the operators, which create or annihi-
late conduction electrons: H0 �

P
qks ekc

y
qkscqks ,

HT �
P
qps�tqpcy

qsdps 1 H.c.�. We are interested in
the contribution to the tunneling conductance due to
the Kondo effect. The potential scattering terms do not
destroy the effect, as we have seen above. Therefore,
we will ignore these terms [thereby neglecting small
corrections to the densities of states, similar to (10)]. It is
convenient to perform a canonical transformation [3]

as � ascLs 1 bscRs , cs � ascLs 2 bscRs ,

(13)

where

a" � tL,11�t", b" � tR,11�t" ,

a# � tL,21�t#, b# � tR,21�t# ,

and

t" �
q
t2L,11 1 t2R,11, t# �

q
t2L,21 1 t2R,21 . (14)

Unlike in [3], the coefficients in (13) are spin dependent
as a result of the asymmetry of the tunneling amplitudes.
It turns out that only as enter the interaction terms in the
effective Hamiltonian which acquire the same form, as (6)
with

Jzc �
2�t2" 2 t2# �

Ec
, Jzs �

2�t2" 1 t2# �
Ec

,

J� �
4t"t#
Ec

,
(15)

and with definitions of the operators analogous to (9) (with
cs replaced by as).
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In the weak coupling regime T ¿ TK (the character-
istic energy scale of the problem—the Kondo tempera-
ture TK —is discussed below) the Kondo contribution GK

to the differential conductance can be calculated pertur-
batively from (8) and (13). The resulting expression is
lengthy; therefore we present it only for the symmetric case
tqp � tq, when t" � t# � t and Jzs � J� � J � 4t2�Ec.
In this case the result can be written in a compact form,

GK �
e2

p h̄
g0

µ
3p2�8

ln2�T�TK �

∂
, g0 �

µ
2tLtR
t2L 1 t2R

∂2

.

(16)

In the strong coupling regime T ø TK the spin-flip scat-
tering is suppressed, and the system allows an effective
Fermi-liquid description (see, for example, [16]). The
zero-bias conductance then follows immediately from the
Landauer formula,

GK �
e2

2p h̄

X
s

Ts , Ts � �2asbs�2. (17)

In the symmetric case (17) reduces to GK � �e2�p h̄�g0.
By virtue of the universality of the Kondo model, the two
independent parameters, g0 and TK , are sufficient for the
description of GK in the whole temperature range T ø
D. Notice that, due to the asymmetry of the coefficients
in (13), the transmission probabilities Ts retain the spin
dependence even in the unitary limit, unlike in the N �
odd Kondo effect [3]. This reveals itself in the spin current
in response to the applied voltage, with the corresponding
spin conductance given by GS

K � �e2�2p h̄�
P

s sTs fi

0. However, this effect might be difficult to measure.
If there is a finite bias eV ¿ TK or if the magnetic

field departs from the degeneracy points B � 6D, the situ-
ation resembles that encountered for the case N � odd
[4,10]: At B � 6D, the conductance exhibits peaks near
zero bias, whose width saturates to TK in the Kondo regime
T ø TK . When the degeneracy is lifted, each of these
peaks splits into two. Therefore, the peak positions in
the �B, eV � plane are located at those points which sat-
isfy either jB 2 Dj � eV or jB 1 Dj � eV . For a fixed
eV fi 0, these equations have four solutions for B.

The feasibility of experimental realizations of the pro-
posed Kondo effect depends crucially on the value of the
Kondo temperature TK . Since for ns � n0 the scaling in-
variant [15] C2 � �J z�2 2 �J ��2 � � 2n0

Ec �2�t2" 2 t2# �2 $

0, the first of the scaling equations (11) can be written as
dJ z�d lnD � C2 2 �J z�2, which after integration results
in

ln
Ec
D

�
1

2C
ln

∑µ
J z 2 C
J z 1 C

∂ µ
J
z
0 1 C

J
z
0 2 C

∂∏
.

Here we have assumed that the initial bandwidth is of
the order of Ec, and J

z
0 is the bare value of J z . The

condition J z�D � Tk� � 1 gives the logarithmic estimate
of the Kondo temperature. Since C ø 1, one finds

TK � Ec exp�2A�J z
0 	 , (18)
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where A �
1

2l ln� 11l

12l �, l � C�J z
0 , and 0 # l , 1. In

the isotropic limit l ! 0 one has A ! 1 and (18) reduces
to the usual expression TK � Ec exp�21�J z

0 �. For a
given J

z
0 this value is significantly higher than that corre-

sponding to the strongly anisotropic limit. When l ! 1
the factor A diverges as ln�1 2 l�21, and TK�Ec ! 0 as
�1 2 l�1�J z

0 . The parameters J
z
0 and C which control

the Kondo temperature TK can be expressed in terms of
the Kondo temperatures TN 61

K � Ec exp�21�n0JN 61�
for the nearby Coulomb blockade valleys with an odd
number of electrons N 6 1, since the corresponding
exchange constants are given by JN 21 � 4t2# �Ec and
JN 11 � 4t2" �Ec:

J z
0 �

1
2

µ
1

lnEc�TN 21
K

1
1

lnEc�TN 11
K

∂
,

C �
1
2

É
1

lnEc�TN 21
K

2
1

lnEc�TN 11
K

É
.

From these equations and from (18) it follows that

minTN 61
K & TK & maxTN 61

K . (19)

Thus, TK is estimated to be between its corresponding
figures at the neighboring Coulomb blockade valleys with
an odd number of electrons. It ensures the observability of
the proposed effect in the systems studied in [5–8].

In conclusion, we argue in this Letter that spin-
degenerate quantum dots with an even number of elec-
trons exhibit the Kondo effect in a finite magnetic field,
when the Zeeman energy is equal to the single-particle
level spacing in the dot, and, therefore, is much larger than
the Kondo temperature. The effect appears due to a large
difference between the characteristic energy scales for spin
and charge excitations of quantum dots, and cannot be
realized within the conventional Kondo systems in which
itinerant electrons interact with magnetic impurities.
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