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Multiscale Random-Walk Algorithm for Simulating Interfacial Pattern Formation
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We present a novel computational method to simulate accurately a wide range of interfacial patterns
whose growth is limited by a large-scale diffusion field. To illustrate the computational power of this
method, we demonstrate that it can be used to simulate three-dimensional dendritic growth in a previously
unreachable range of low undercoolings that is of direct experimental relevance.

PACS numbers: 81.30.Fb, 02.70.Lq, 05.70.Ln, 64.70.Dv
Interfacial patterns form spontaneously in a wide range
of physical and biological systems where the motion of
an interface is limited by one (or several) diffusion fields,
each one obeying the diffusion equation,

≠tu � D=2u , (1)

with specified boundary conditions on the interface. Clas-
sic examples include various cellular, dendritic, or eutectic
solidification patterns (where u represents the temperature
or an impurity concentration) [1], dendrite-like branched
patterns formed during electrochemical deposition (where
u is some ion concentration) [2], and complex growth
morphologies produced by bacterial colonies under stress
(where u can represent the concentration of some nutrient
or a signaling agent) [3].

When attempting to accurately simulate the growth of
such structures, one is generally faced with two major dif-
ficulties. The first one is front tracking, which requires to
resolve accurately the boundary conditions imposed on u at
the evolving interface. Dendritic solidification, where even
a weak crystalline anisotropy crucially influences the mor-
phological development, epitomizes this difficulty. The
second problem is the large disparity of scale between the
growing structure and the diffusion field surrounding it.
The physical origin of this disparity is essentially dimen-
sional. The diffusion field decays ahead of the growth
structure on a length scale l � D�y, where y is the ve-
locity of the advancing interface, whereas the characteristic
scale of the structure, e.g., the tip radius r of a growing
dendrite, is itself the geometric mean of l and a short length
scale cutoff proportional to the interface thickness. Thus,
for small growth rate, l can be several orders of magnitude
larger than r, and simulations that resolve simultaneously
the details of the interfacial pattern and the diffusion field
become extremely difficult.

Whereas various methods have been successfully devel-
oped to handle front tracking, bridging the length scale
gap between r and l has remained a major computational
challenge. A natural idea to overcome this problem is
to use multigrid or adaptive mesh refinement algorithms
that make the grid progressively coarser away from the
interface [4–6]. However, such methods need to dynami-
cally adapt their grids to follow the moving interface. This
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is a nontrivial task, and quantitative simulations of den-
dritic crystal growth at low undercooling have remained
restricted to two dimensions (2D) [6].

In this Letter, we present a novel hybrid computational
approach that efficiently bridges this length scale gap.
Over most of the computational domain, the diffusion
equation is simulated by an ensemble of off-lattice random
walkers that take longer, and concomitantly rarer, steps
with increasing distance away from the growing interface.
This drastically reduces the computational cost for evolv-
ing the large-scale field. Moreover, a short distance away
from the interface, this stochastic evolution is connected
to a finite-difference deterministic solution of the interface
evolution. This conversion, in turn, reduces the inherent
noise of the stochastic method to a negligibly small level
at the interface. This approach is relatively simple to im-
plement in both 2D and 3D while being at the same time
quantitatively accurate. Here we sketch the method and
then report results that demonstrate its capability to yield
new quantitative predictions testable by experiments in the
context of dendritic crystal growth. For clarity, we expose
the method in this context although it will become clear
below that it is general.

Let us consider a solid-liquid interface whose motion is
limited by heat diffusion and define a scaled temperature
field u that is zero in equilibrium and equal to 2D in the
liquid far from the interface, where D is the dimensionless
undercooling. At the interface, u satisfies the well-known
boundary conditions,

yn � D�≠nujs 2 ≠nujl� , (2)

u � 2d0

2X

i�1

�a�n̂� 1 ≠2
ui

a�n̂��ki , (3)

corresponding to heat conservation and local thermody-
namic equilibrium at the interface, respectively, where yn

is the normal velocity of the interface, d0 is a microscopic
capillary length, ui are the local angles between the nor-
mal n̂ to the interface and the two local principal directions
on the interface, ki are the principal curvatures, and the
function a�n̂� describes the orientation dependence of the
surface energy.
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The basic idea of the method is to divide space into
an “inner” and an “outer” domain as illustrated in Fig. 1.
The inner domain consists of the growing structure and a
thin “buffer layer” of liquid surrounding the interface. The
outer domain corresponds to the rest of the liquid, and is
much larger than the inner domain at low undercooling. In
the inner domain, we solve deterministically the diffusion
equation on a fine uniform mesh. Moreover, for the present
crystal growth application, we handle front tracking using
a phase-field approach [7], and time step explicitly both u
and the phase field in the inner region using the same pro-
cedure as Karma and Rappel [8]. The geometry of Fig. 1,
however, implies that any other front tracking method that
solves the diffusion equation on a uniform mesh could be
used instead. Moreover, since the boundary conditions
on u need not necessarily be those defined by Eqs. (2)
and (3), the method obviously extends to other diffusion-
limited pattern forming systems.

In the outer domain, the diffusion equation is simulated
stochastically by an ensemble of off-lattice random walk-
ers. The idea of solving the diffusion or Laplace equation
with an ensemble of random walkers is well known and has
been used previously to simulate diffusion-limited growth
[9] and Hele-Shaw flow [10]. The main new feature of
our method is that we have separated the solid-liquid in-
terface from the boundary at which the conversion from the
deterministic to the stochastic solution of the diffusion

FIG. 1. Top: snapshot of a 2D simulation for D � 0.1 and
e4 � 0.025 showing the solid-liquid interface (solid line), the
inner-outer domain conversion boundary (dashed line), and the
random walkers (dots). Only a small part of the outer domain
and one out of 50 walkers are shown for clarity. Bottom: en-
larged view of the conversion boundary (dashed line) showing
the fine and coarse grids. Shaded cells are conversion cells and
walkers (dots) are restricted to the outer region.
equation takes place. This separation yields two essential
benefits. First, it makes it possible to use the phase-field
approach with its proven accuracy to simulate the interface
evolution and to resolve even a weak crystalline anisotropy,
without being affected by the details of the conversion pro-
cess. Second, in the buffer layer between the solid-liquid
interface and the conversion boundary, the temperature
obeys the deterministic diffusion equation. Consequently,
the noise created by the stochastic release and impinge-
ment of walkers is rapidly damped away from the con-
version boundary. Hence, the amplitude of temperature
fluctuations at the solid-liquid interface can be reduced to
an insignificant level without much cost in computation
time by increasing the thickness of the buffer layer.

To connect the inner (deterministic) and outer (stochas-
tic) solutions, we have to supply a boundary condition for
the integration of the inner region, and we must specify
how walkers are created and absorbed at the boundary be-
tween inner and outer regions. Both processes are handled
by using a coarse-grained grid that is superimposed on the
fine grid of the inner region as shown in Fig. 1. Cells of
the coarse grid on the border between the inner and the
outer region, shaded in Fig. 1, are called conversion cells.
The temperature in a conversion cell is related to the local
density of walkers,

ucc � 2D���1 2 mi�t��M��� , (4)

where mi�t� is the number of walkers in conversion cell
number i at time t, and M ¿ 1 is a fixed integer. Hence,
an empty cell corresponds to u � 2D (the initial state),
whereas a box containing M walkers corresponds to u �
0. This formula is used in each time step to obtain the
boundary condition for the integration of the inner region.
Next, we determine the quantity of heat that flows in or out
of each conversion cell from the inner region, and add this
amount to a reservoir variable Hi�t� which describes the
heat content of conversion cell number i. If this variable
exceeds a critical value Hc, a walker is created and Hc

is subtracted from the reservoir. Conversely, if Hi�t� falls
below 2Hc, a walker is absorbed and Hc is added to the
reservoir. This procedure assures that walkers are created
and absorbed at a rate which is proportional to the local
heat flux, and each walker corresponds to the same discrete
amount of heat.

Evidently, as the structure grows the geometry of the
conversion boundary and the configuration of the coarse
grid need to be periodically updated in order to maintain
a constant thickness of the liquid buffer layer. This proce-
dure, however, is straightforward since the structure of the
grids does not change.

In the outer region, each walker is represented by a
set of variables indicating its position and the time it has
next to be updated. To update a walker, a new position is
randomly selected with a probability distribution given by
the diffusion kernel,
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P� �x0, t0j �x, t� �
1

�4pD�t0 2 t��d�2 exp 2
j �x0 2 �xj2

4D�t0 2 t�
,

(5)

where �x and �x0 are the old and new positions of the walker,
respectively, and t0 2 t is the time increment between
updates. This representation of the diffusion equation is
widely used in quantum Monte Carlo methods [11]. The
key improvement that makes the algorithm efficient in the
present context is the introduction of a variable step size:
we allow walkers to take progressively larger steps with
increasing distance away from the interface, and to be
concomitantly updated more rarely, which does not af-
fect the quality of the solution near the solid-liquid inter-
face. Adaptive steps have been previously used to speed up
simulations of diffusion-limited aggregation, albeit in a
simpler Laplacian context where the stepping time is ir-
relevant and only one walker at a time is simulated [12].
Typically, we vary the average step size between a value
comparable to the spacing of the inner mesh to about
100 times that value. Our test dendrite computations show
that the far field can be evolved at essentially no extra cost:
the program spends most of its time in the inner region and
for the walkers which are near to the conversion boundary
and have to make small steps. Thus this “adaptive step”
implementation yields essentially the same benefits as an
adaptive meshing algorithm, while avoiding the overhead
of regridding. Finally, our method can be easily paral-
lelized as will be discussed in more detail elsewhere.

To illustrate our method, we focus here on the initial
stage of dendritic solidification, during which four (six)
primary arms in 2D (3D) emerge from a structureless nu-
cleus, as shown in the example 3D run of Fig. 2. While
this transient regime has recently been investigated numeri-
cally in 2D and experimentally in 3D [13], it has not yet
been explored by simulations in 3D.

The present simulations started from a small spherical
solid nucleus with a uniformly undercooled temperature
u � 2D, and fully exploited a cubic symmetry �i.e.,
a�n̂� � �1 2 3e4� �1 2 4e4��1 2 3e4� �n4

x 1 n4
y 1 n4

z ��
with the Cartesian axes defined parallel to the [100]
directions	 to reduce simulation time. The value
e4 � 0.025 that corresponds to the experimentally es-
timated anisotropy value for pivalic acid [14] was used
in all the simulations reported here. Results for other
anisotropies and that pertain to the 3D morphology of
the dendrite tip will be discussed elsewhere. To obtain
quantitative data on the growth transients, we recorded
the arm length L�t�, the tip velocity y�t� � �L�t�, the tip
radius of curvature r�t�, and the total volume of solid
Vs�t�. In Fig. 2, we show y�t� and r�t� for a 3D run at
D � 0.05 together with the time-dependent tip selection
parameter s��t� � 2d0D��r2�t�y�t�� and the steady-state
velocity yss calculated by a boundary integral method.
Two results are particularly noteworthy. First, s��t�
becomes essentially constant as soon as the arms have
emerged from the spherical seed, whereas both y�t� and
1742
FIG. 2. Result of a 3D dendrite growth simulation for D �
0.05 and e4 � 0.025 with snapshots of the 3D structure (top)
at the times corresponding to the arrows. This run took 6 h on
64 processors of the CRAY T3E at NERSC and used up to
5 3 106 walkers.

r�t� are far from their steady-state values. Physically,
this is a direct consequence of the fact that y�t� and
r�t� evolve slowly on the tip diffusion time scale r2�D
where s� is established. Second, we find that, as the
undercooling is lowered, the volume of the dendrite (or its
area in 2D) approaches that of a sphere (circle) growing at
the same undercooling. The latter is readily obtained from
Zener’s well-known similarity solution, which yields that
the radius of a d-dimensional sphere grows as

p
4pdDt,

where the Peclet number pd�D� is implicitly defined by
D � p

d�2
d exp�pd�

R`

pd
s2d�2e2s ds. Both in 2D and 3D,

the volume of the dendrite grows slightly faster than the
one of the sphere, but for the lowest undercoolings we
could attain, the final volume differed by only 20% from
this prediction, even though the arms were already very
well developed.

The above observations are in good agreement with
theoretical expectations for 2D growth transients. In par-
ticular, Almgren et al. have analyzed the related problem
of anisotropic Hele-Shaw flow (i.e., Laplacian growth) at
constant flux [15]. Using an exact solution for the Laplac-
ian field around a cross and exploiting the constancy of
s�, they constructed a self-affine scaling shape for the
arms. The length and width of this shape grows as ta

and tb , respectively, with a � 3�5 and b � 2�5. As
subsequently remarked by Brener [16], the diffusion equa-
tion can be replaced by Laplace’s equation on the scale
of the dendrite as long as L�

p
Dt ø 1, and, hence, 2D
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growth transients should obey this scaling with a flux set by
the diffusive far field of Zener’s similarity solution in the
low undercooling limit. In Fig. 3a, we plot the functions
a�t� � d�lnL��d�lnt� and n�t� � d�lnVs��d�lnt�. For an
exact Laplacian scaling in 2D, a�t� � 3�5 and n�t� � 1.
With decreasing undercooling, both curves become flatter
and indeed approach the expected Laplacian scaling. The
slow rise with time of both curves can be attributed to dif-
fusive corrections to the Laplacian scaling due to the slow
increase in time of L�

p
Dt. Recently, Provatas et al. have

reported scaling exponents that differ from the Laplacian
prediction and that appear to be independent of D for small
D [13]. We note, however, that they used the distance from
the tip to the time-dependent base (where the dendrite shaft
is narrowest) to scale their results instead of L�t�. Since
L�t� is the only relevant scaling length for both the shape
and the diffusion field in the Laplacian limit, we believe
that these exponents are spurious. When L�t� is used as a
scaling length, our results are consistent with an approach
to Laplacian scaling in the limit of vanishing undercooling.

It is simple to heuristically generalize some of the above
ideas to 3D. If we assume, as a reasonable first approxima-
tion, that the arm shape is axisymmetric and has a scaling
form r�x, t� � tb r̃�x�ta�, where x is the growth direction,
the constancy of s� imposes that 4b 2 a 2 1 � 0. Fur-
thermore, assuming that the volume of the dendrite grows
approximately as the one of the 3D similarity solution, we
have in addition n � a 1 2b � 3�2. These two condi-
tions yield a � 2�3 and b � 5�12. Figure 3b shows the
functions a�t� and n�t�, defined as before, in 3D. As in 2D,

FIG. 3. Functions a�t� and n�t� vs scaled time t�t0�D� in 2D
(a) and 3D (b). In order to show all curves on the same plot,
t0�D� was defined to be the time at which the tips are ahead
of the grooves by about two tip radii. In order of decreas-
ing D, t0D�d2

0 � 2.29 3 104, 9.03 3 105, 4.36 3 107, 5.35 3

108, and 1.39 3 1010 in 2D, and 4.18 3 106, 5.58 3 107, and
1.17 3 1010 in 3D.
the curves approach the predicted exponents with decreas-
ing undercooling, but the differences remain larger than in
2D even for the lowest undercooling. This can be partly
accounted for by the fact that the tip velocity, and, hence,
also L�

p
Dt, is much larger in 3D than in 2D at equal un-

dercoolings. We must emphasize that, in the absence of
an exact 3D Laplacian solution, and in view of the above
assumptions, no claim is made here that these 3D expo-
nents are exact or that a scaling regime exists asymptoti-
cally at small undercooling in 3D. We content ourselves
with the fact that they describe reasonably well our present
simulations.

In conclusion, we have presented a novel computational
approach that can resolve accurately the details of a com-
plex branched structure and its large-scale surrounding dif-
fusion field. The method can be combined with many of
the existing front tracking methods and should be appli-
cable to a wide range of diffusion-limited pattern forming
systems. Furthermore, we have demonstrated its feasibil-
ity in the nontrivial test case of dendritic growth in a range
of parameters previously unreachable in 3D.
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