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Stiffness of Single-Walled Carbon Nanotubes under Large Strain
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Large-scale molecular dynamic simulations of the axial deformations in single-walled carbon nano-
tubes have been performed using an O�N� tight-binding method. Our simulations indicate that under
large strain, 0 K stress is remarkably sensitive to helicity, and that a zigzag nanotube and an armchair
nanotube are the stiffest, respectively, under elongation and compression regimes. Furthermore, the
elastic properties of a graphite sheet have been investigated using a simple harmonic potential and an
analytic bond-order potential. The results suggest that the unique elastic properties of carbon nanotubes
originate from those of a six-membered ring.

PACS numbers: 61.48.+c
Ever since the discovery of carbon nanotubes (CNT)
by Iijima [1], enormous fundamental and applied research
has been in progress [2]. Among them, several experi-
ments [3] and theoretical predictions [4–7] have revealed
the remarkable mechanical properties of CNTs. These me-
chanical properties may be characterized by the following
three features. First, the mechanical properties are highly
anisotropic. Second, the Young’s modulus (� 1 TPa) is
comparable to that of a diamond. Third, when a CNT
that has been bent is released from the strain, it returns to
its original form without causing any direct fracture like
most materials. These prominent mechanical properties
lend themselves to a wide variety of potential applications.

So far, several groups have theoretically predicted that
mechanical properties under small strain such as Young’s
modulus are insensitive to helicity [4,5]. Such helicity
independent mechanical properties contrast sharply with
those electronic properties that are crucially controlled by
helicity. However, the effect of helicity, in other words, the
arrangement of six-membered rings, may affect the me-
chanical properties under such conditions as large strain.

In this Letter, the researchers aim to clarify the relation
between stress and helicity of single-walled carbon nano-
tubes (SWNT) under large strain by means of atomistic
lattice mechanics. First, large-scale molecular dynamic
(MD) simulations of axial elongation and compression of
SWNTs are performed at 0 and 300 K using an O�N�
tight-binding (TB) method. Second, the strain energy val-
ues of SWNTs are compared with those of a graphite sheet
under large strain. Third, the strain energy values of a
graphite sheet are analyzed by two model potentials, a
simple harmonic potential and an analytic bond-order po-
tential (BOP).

The recent progress of O�N� methods in TB electronic
structure calculations [8] allows us to perform direct MD
simulations based on a quantum mechanical TB Hamilton-
ian [9] for large systems that include thousands of atoms.
To investigate the effects of helicity, we performed MD
simulations of elongation and compression for a series
of �10, 10�, �12, 8�, �14, 5�, �16, 2�, and �17, 0� SWNTs,
which have a nearly equal radius (� 6.7 Å) and a length
0031-9007�00�84(8)�1712(4)$15.00
of 140 Å, at T � 0 and 300 K using the O�N� TB method
[10]. In these simulations, the end atoms were shifted
along the axis by small steps, and the whole tube was opti-
mized by the conjugate-gradient method, while keeping the
ends constrained after, in the 300 K simulations, constant
temperature MD simulations were performed at 300 K
for 0.1 ps using the Nose-Hoover algorithm [11] with the
constraint.

Remarkable temperature effects were observed in the
strain and shape of buckling under compression as shown
in Fig. 1. At 0 and 300 K the five SWNTs buckle at about
19% and 10% of the compressed strain, respectively. In the
�10, 10� nanotube at 80% of the initial length, the mean
wave lengths of the ripple buckling at 0 and 300 K are
about 4.8 and 13 Å, respectively. The long range buck-
ling at 300 K makes the helical dependence of the stress
indistinct under large strain, since the local strain of each
atom in the SWNT is released at an early stage of compres-
sion compared with that of compression at 0 K. Although
the temperature dependence of the buckling morphology
is very intriguing as a bifurcation phenomenon, we con-
centrated on the relation between stress and helicity at 0 K
before the buckling occurred.

In Fig. 2(a) the strain energy values per unit length of
the armchair �10, 10� and zigzag �17, 0� tubes under elon-
gation and compression at 0 K are shown as a function of

FIG. 1. Buckling of �10, 10� nanotubes, which include 2280
carbon atoms, under axial compression at (a) 0 and (b) 300 K
obtained by O�N� TBMD simulations. These snapshots are at
80% of the initial length (140 Å).
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FIG. 2. (a) Strain energy values of the armchair �10, 10� and
zigzag �17, 0� tubes as a function of the axial strain at 0 K.
(b) Axial stresses of SWNTs which have a nearly equal ra-
dius (� 6.7 Å) at 15% of the axial compression and elongation
at 0 K.

the strain. The Young’s moduli of the zigzag and armchair
tubes are 988 and 973 GPa, respectively, where they were
calculated according to the definition of Lu [5]. The val-
ues of the Young’s moduli are almost identical with his
results, and the insensitivity for helicity is also consistent
with the predictions made by other groups [4]. On the other
hand, the strain energy under large strain conditions shows
significant sensitivity to helicity. Figure 2(b) shows ax-
ial stresses at 15% of elongation and compression at 0 K,
quantities which are calculated numerically as slopes of
the strain energy values, as a function of the helical angle.
Although the stresses for both elongation and compression
depend almost linearly on the helical angle, the slopes are
opposite to each other. The stiffest SWNT for elongation
is the �17, 0� zigzag tube, while that for compression is the
�10, 10� armchair tube. In particular, the stress of the arm-
chair �10, 10� tube is about double that of the �17, 0� zigzag
tube for compression. So far it has been reported that the
onset of plastic deformation under elongation depends on
helicity [6]. This is the first demonstration of helicity de-
pendence on stress (stiffness), as well as its turning over
between the elongation and compression processes. Fig-
ure 2(a) indicates that the remarkable elastic properties un-
der large strain are caused by nonparabolic strain energy.

We next investigated the origin of the nonlinear elastic
properties of the SWNTs under large strain in terms of
atomistic lattice mechanics. To separate the effects of the
tube structure from those of a graphite structure on the
nonparabolic strain energy, the strain energy values of the
�10, 10� armchair and �17, 0� zigzag tubes were compared
with those of unfolded graphite sheets calculated with the
TB model. Figure 3(a) shows the strain energy values of a
graphite sheet per unit cell and per unit length under two
kinds of strain: A strain and Z strain correspond to the
axial strains for armchair and zigzag tubes, respectively.
The unit cell includes four carbon atoms, and the norms of
the orthogonalized unit vectors a and b are jaj � 2r2 sinu1
and jbj � 2r1 2 2r2 cosu1, respectively [Fig. 3(a), inset].
These structural optimizations were performed with the
atoms maintained in the two-dimensional sheet, where the
changes in the length of the cell vector perpendicular to
the strained axis were 22.6% and 22.4% at the A and
Z strains of 10%, and 3.8% and 3.7% at those of 210%,
respectively. The A strain energy per unit cell is larger than
that of the Z strain under both elongation and compression,
implying that the six-membered ring behaves differently
depending on the direction of stress.

The A- and Z-strain energy values in Fig. 3(b) were
obtained by simply multiplying the A- and Z-strain val-
ues in Fig. 3(a) by 10 and 17, respectively, which corre-
spond to the A- and Z-strain energy values per two kinds of
supercells. The sets of the cell vectors of the two super-
cells are �a, 10b� and �17a, b�, which correspond to the
developments of the �10, 10� armchair and �17, 0� zigzag

FIG. 3. (a) Strain energy values of the graphite sheet per unit
cell and per unit length for the A strain and Z strain. (b) Strain
energy values of the graphite sheet per supercells �a, 10b�
and �17a, b� and per unit length for A strain and Z strain,
respectively.
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tubes, respectively. The strain energy values of the two
supercells cross each other at the origin, while the strain
energy values per unit cell are positioned tangentially to
each other at the origin as shown in Fig. 3(a). The energy
crossing is caused by the competition between the number
of six-membered rings in the supercells and the directional
dependence of a six-membered ring in strain energy, and
by the difference between nonparabolicity for the A and
Z strains in strain energy per unit cell. A comparison be-
tween Fig. 2(a) and Fig. 3(b) led us to the conclusion that
the crossing of the two strain energy values at the origin
in Fig. 2(a) is due more to the nonlinear elastic properties
of the graphite sheet than the effects of the tube structure.
Hence, the nonlinear elastic properties of SWNTs can be
broken down into two contributions: the directional depen-
dence of the nonlinear elastic properties of a six-membered
ring, and the number of rings on the circumference of
the SWNT.

Next, we considered a simple harmonic model for the
graphite sheet in order to relate the elastic properties of the
sheet with the strain of the bond lengths and bond angles
in a six-membered ring. In addition, the strain energy
values of the harmonic model were compared with those
of BOP [12] within a second moment approximation to
reveal the quantum mechanical origin of the nonparabolic
strain energy. Assuming that the harmonic model includes
bond-stretching (BS) and angle-bending (AB) energy, we
can express the strain energy Eh of the graphite sheet per
unit cell [see Fig. 3(a), inset] as follows:

Eh � kr �r1 2 r0�2 1 2kr �r2 2 r0�2

1 4ku�u1 2 u0�2 1 2ku�u2 2 u0�2, (1)

where r0 and u0 are the optimum values, and kr and ku are
the spring constants. We analyzed the model potential in
two extreme situations: ku ø kr and kr ø ku .

When ku ø kr , which means that the bond lengths are
fixed, only AB energy contributes to the strain energy
Eq. (1). Assuming that atoms are confined in a plane,
bond angle u1 behaves as a spring which has 4 times the
strength of bond angle u2 for any strain, since the sum
of the interior angles of the six-membered ring is a con-
stant. In Fig. 4(a) the strain energy values in Eq. (1) for
ku ø kr per unit length are shown as a function of the per-
centages of the A and Z strains. Both the A- and Z-strain
energy values increase remarkably under elongation, no-
tably the maximum elongating strain on A strain, which
is ��2 2

p
3��

p
3� 3 100 � 15.5%. When kr ø ku , the

bond angle is fixed. In the case of A strain, since the
bond length r1 is constant and the strain energy is de-
termined by only the BS energy on bond 2, the strain
energy per unit length for A strain can be expressed as
�2�

p
3�krr0S2

A with SA � �a 2 a0��a0. For Z strain, on
the other hand, the BS energy values of both bonds 1 and
2 contribute to the strain energy. The strain energy per unit
1714
FIG. 4. Strain energy values of a graphitic sheet for the A and
Z strains by two model potentials: a harmonic potential and an
analytic bond-order potential (BOP). (a), (b), (c), and (d) show
the harmonic potential and the analytic BOP in fixing the bond
lengths and the bond angles, respectively.

length is given as the solution of a simple extremum prob-
lem under a constraint (jbj � 2r1 1 r2) as 2

3krr0S2
Z with

SZ � �b 2 b0��b0. Thus, we see that both the strain en-
ergy values completely obey Hooke’s law under both the
A and Z strains with the constraint kr ø ku [Fig. 4(c)],
indicating that the strain energy of the graphite sheet in
the simple harmonic model does not reproduce the non-
parabolic behavior seen in Fig. 3(a).

Moreover, the strain energy of a graphite sheet is com-
puted by the analytic BOP [12] within a second moment
approximation. The analytic BOP gives an explicit expres-
sion, as a function of the bond length and bond angle, of
the cohesive energy in the TB model. In the TB model [9],
the strain energy EBOP of a graphite sheet is defined as the
difference between the sum of two energy values, the bond
energy Ebond and the repulsive energy Erep , and the non-
strain energy E0. The bond energy per unit cell [Fig. 3(a),
inset] is given by

Ebond � 24hs1Qs1 2 4hp1Qp1

2 8hs2Qs2 2 8hp2Qp2 , (2)

where each term corresponds to the s and p bond energy
values on bonds 1 and 2, respectively. hs and hp are s

and p hopping integrals, respectively. Within the second
moment approximation [12], the bond orders Q are given
as explicit functions of the bond lengths and bond angles
for the nearest neighbor atoms as follows:

Qs1 �
hs1q

h2
s1

1 2g2
1h2

s2

, (3)

Qp1 �
hp1q

h2
p1

1 2h2
p2

, (4)
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Qs2 �
hs2q

h2
s2

1 g2
1h2

s1
1 g2

2h2
s2

, (5)

Qp2 �
hp2q

h2
p1

1 2h2
p2

, (6)

where g is an angular function on s bond [12]. The
expression of the bond energy clearly shows that the bond
angles are related to the bond energy through the s bond
orders. The strain energy given by the analytic BOP is
compared with that of the harmonic model for two extreme
situations: fixed bond lengths and bond angles in order to
decompose the nonparabolic strain energy of the graphite
sheet for the A and Z strains into contributions of the bond
length and bond angle.

When the bond lengths are fixed, since the p bond
energy is invariant for the A and Z strains, the bond energy
is given by

Ebond�r�r0� � 24hs0

0
BB@

1q
1 1 2g2

1

1
2q

1 1 g2
1 1 g2

2

1
CCA ,

(7)

where hs0 � 12.71 eV. Figure 4(b) shows the strain
energy values for the A and Z strains by the analytic BOP
in fixing the bond lengths. From a comparison between
Figs. 4(a) and 4(b) we see that the strain energy of the an-
alytic BOP increases significantly compared with that of
the harmonic model in the compression of the A strain as
well as in the elongation of the Z strain. The increase of
this energy can be attributed to the repulsive energy occur-
ring between the second nearest neighboring atoms, since
the nonparabolic behavior of Eq. (7) for the A and Z strains
is very similar to that of the harmonic model, and the re-
pulsive energy occurring between the nearest neighboring
atoms is invariant. When the bond angles are fixed, on the
other hand, the strain energy for the A and Z strains is de-
termined numerically under the constraints of jaj �

p
3 r2

and jbj � 2r1 1 r2, respectively. Figure 4(d) shows the
strain energy for the A and Z strains. The strain energy
values are significantly nonparabolic and quite similar to
those in Fig. 3(a) compared with Fig. 4(c).

The separation of the bond-stretching and angle-
bending models provides a clear explanation for the
origin of the nonparabolic strain energy observed in the
graphite sheet. That is, the nonparabolic behavior of
the strain energy shown in Fig. 3(a) results predominantly
from that of bond stretching rather than that of angle
bending, and the crossing of the two strain energy values
for the A and Z strains comes from the magnitude of the
repulsive energy between the second neighboring atoms
under compression, which causes the considerably helicity
dependence of the stress of SWNT under large strain
at 0 K.

In summary, our O�N� TB simulations indicate that the
buckling shape of SWNTs depend greatly on the tempera-
ture of the system, and that stress under large strain at 0 K
is very sensitive to helicity. Under both elongation and
compression the stresses of SWNTs with a nearly equal
radius depends almost linearly on a helical angle with
the opposite slopes, and the stiffest SWNTs are a zigzag
and armchair tube, respectively. A comparison between
SWNTs and a graphite sheet in strain energy reveals that
helicity dependence of the stress is caused by the graphite
structure rather than the tube structure. Moreover, we
investigated the strain energy of a graphite sheet with a
harmonic model and an analytic BOP, which gives an ex-
planation for the nonparabolic strain energy values of the
A and Z strains. Thus, we conclude that the mechanical
properties of SWNTs under large strain at 0 K significantly
reflect the network structure.
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