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Three-Loop Slope of the Dirac Form Factor and the 1S Lamb Shift in Hydrogen
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The last unknown contribution to hydrogen energy levels at order ma7, due to the slope of the Dirac
form factor at three loops, is evaluated in a closed analytical form. The resulting shift of the hydrogen
nS energy level is found to be 3.016�n3 kHz. Using the QED calculations of the 1S Lamb shift, we
extract a precise value of the proton charge radius rp � 0.883 6 0.014 fm.
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Precision experiments with hydrogen and, more gener-
ally, with hydrogenlike atoms serve as an excellent labo-
ratory to test theoretical approaches to bound state QED
(for a recent review, see, e.g., [1]). These experiments ad-
dress a number of features of the simplest atoms, such as
the energy levels of the ground and excited states, and the
corresponding lifetimes.

In recent years we have seen remarkable progress in the
experimental study of the hydrogen atom. In particular the
accuracy of the 1S Lamb shift measurements has increased
dramatically over the years [2–7]. All measurements are
consistent with each other and the most accurate value so
far was determined in Ref. [7]:

DE�1S�exp � 8 172 837�22� kHz . (1)

This result was obtained by analyzing the most precise
measurements for the transition frequencies in hydrogen
(see [7] for details).

Theoretically, since the ratio of the electron mass m to
the proton mass M is very small, it is convenient to write
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hydrogen energy levels as a double expansion in a and
m�M. The corrections which survive in the limit M ! `

are known as nonrecoil corrections; the other corrections
are called recoil ones. It is further convenient to organize
nonrecoil corrections in powers of an�Za�l , assigning an
auxiliary notation Z for the proton charge. In this case
the correction an�Za�l describes a contribution of all di-
agrams with l 2 3 Coulomb photons exchanged between
the electron and the proton and with n photons emitted and
absorbed by the electron. The general expression for the
nS-level shift can be written as

DE � DEnonrecoil 1 DErecoil 1 DEvp 1 DEproton ,

(2)

where we have also added a contribution of muons and
hadrons to photon vacuum polarization and a contribution
due to the proton structure (see a discussion below).

We begin with nonrecoil corrections. These corrections
can be parametrized as (see, e.g., [8–10])
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where mr � mM��m 1 M� is the reduced mass of the
electron and L � logm��mr�Za�2� and the function
A�Za� contains all higher order terms in the expansion in
Za. We have also indicated that the higher order correc-
tions contain a logarithm of the fine structure constant in
the third power [11].

All the terms in the above equation, with the exception
for C40, are currently known. It is the purpose of this paper
to report on the calculation of the last missing ingredient in
C40, the slope of the Dirac form factor at zero momentum
transfer.

The hydrogen atom is formed because of a Coulomb in-
teraction of the proton with the electron. The interaction of
the virtual photon with the electron on its mass shell can be
parametrized by the so-called Dirac and Pauli form factors:

ū�p2�Gmu�p1� � ū�p2�

3

µ
F1�q2�gm 1 ismn

qm

m
F2�q2�

∂
u�p1 � ,

where the u�p� are the electron spinors in the initial and
the final state and q is the momenta carried away by the
photon. The momenta satisfy the relation q � p2 2 p1.
An important consequence of QED gauge invariance and
the electron charge definition is that the Dirac form factor
equals unity at zero momentum transfer F1�0� � 1, to all
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orders in the coupling constant. The Pauli form factor at
zero momentum transfer describes an interaction of the
electron spin with the homogeneous magnetic field; it is
the electron anomalous magnetic moment.

Let us now turn to the contribution of the Dirac form
factor to hydrogen energy levels. The typical momenta of
the Coulomb photon in hydrogen is given by the inverse
Bohr radius qtyp � ma, where m is the electron mass.
Compared to the electron mass, this momentum transfer is
quite small and for this reason one can Taylor expand the
Dirac form factor in powers of q2�m2. One obtains

F1�q2� � 1 1 F0
1

q2

m2 1 O

µ
q4

m4

∂
,

where, as we already mentioned, the first term equals unity
to all orders in the coupling constant. The slope of the
Dirac form factor, F0

1 in the above formula, can be written
as a series in a:

F0
1 �

X̀
n�1

µ
a

p

∂n

A
�n�
slope . (4)

In this paper we consider the first three terms in this series.
Two things should be noted at this point. The first and

second order corrections to the slope of the Dirac form
factor contribute to the coefficients A40 and B40 in Eq. (3),
respectively. Moreover, the one-loop slope A

�1�
slope is not

infrared finite, as can be seen from the fact that the term
A41 log�a� appears in Eq. (3). This infrared divergence
gets removed if one takes into account that the electron is
not on its mass shell in the bound state. In the language of
the effective theories, the one-loop slope in Eq. (4) corre-
sponds to “hard” contributions to energy levels. Since the
two- and three-loop slopes of the Dirac form factor are in-
frared finite, the off-shellness of the electron is irrelevant
for these contributions.

Being divergent, the one-loop slope depends upon the
chosen regularization. In the present calculation we have
used dimensional regularization (the space-time dimen-
sion is D � 4 2 2e) for both ultraviolet and infrared
divergences.

Let us briefly describe how the actual calculation of
A

�3�
slope has been done. After applying a projection operator

for the Dirac form factor on the electron-photon vertex and
after performing the Taylor expansion in the photon mo-
mentum transfer, one obtains diagrams of the self-energy
type. There are four basic topologies which appear in this
calculation; characteristic example diagrams are depicted
in Fig. 1. For each of the topologies one writes down a
system of recurrence relations obtained by the use of inte-
gration by parts [12]. Solving this system, it is possible to
show that any integral which belongs to the above topolo-
gies can be expressed through seventeen master integrals.
Luckily, these seventeen integrals have already been com-
puted in the course of the analytical calculation of the elec-
tron anomalous magnetic moment [13] and hence can be
taken from there. Let us mention that as a check of the cal-
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FIG. 1. Examples of electron-photon vertex diagrams that cor-
respond to the four different integration topologies.

culation, and, in particular, on our solution of the system of
recurrence relations, we have reproduced also the analyti-
cal value of the three-loop electron anomalous magnetic
moment. Details of our calculation, including the results
for the individual diagrams, will be presented in a separate
publication.

Our result (the first correct numerical result on the
two-loop slope of the Dirac form factor was published in
Ref. [14]; the analytical result was obtained in [15]) for
the slope of the Dirac form factor is

A
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, (5)
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where a4 �
P`

n�1 1��2nn4� and zk �
P`

n�1 1��nk� de-
notes the Riemann zeta function.

We now turn to the contribution of the slope of the
Dirac form factor to hydrogen energy levels. It is easy
to see that the slope of the Dirac form factor gives rise to
a perturbation of the Coulomb potential:

dVslope�r� �
4pZa

m2 d3�r�F0
1 .

This perturbation delivers a nS-level energy shift:

DEslope � 	c�r�jdVslope�r� jc�r�
 �
4paZ

m2 F0
1jc�0�j2.

Here jc�0�j2 � �mraZ�3��pn3� is the square of the hy-
drogen wave function at the origin. The correction induced
by the three-loop slope of the Dirac form factor is then
[in what follows, numerical results are given in frequency
units using DE ! DE��2p h̄�]
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where cR` is the Rydberg constant in MHz.
Using the values for the Rydberg and the fine structure

constant [16]

cR` � 3 289 841 960.367�25� MHz ,

a � 1�137.035 999 76�50� ,
(9)

we arrive at

DE
slope
a3�Za�4 �n� �

3.016
n3 kHz . (10)

The contribution due to the slope of the Dirac form fac-
tor was the last unknown contribution to the hydrogen en-
ergy levels at order a3�Za�4. The two other contributions
to the coefficient C40 come from the three-loop electron
anomalous magnetic moment and the three-loop vacuum
polarization correction to the Coulomb propagator. These
contributions can be extracted from the literature [13,17].

Taking all three contributions into account, we obtain
the following expression for the coefficient C40 for the S
levels:
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log42 � 0.417 508 ,

(11)

which results in a three-loop correction to the nS-level
Lamb shift:

DEa3�Za�4�n� �
ma7

n3p3

µ
mr

m

∂3

C40

� �3.016 1 5.187 2 6.370�
kHz
n3 �

1.83
n3 kHz .

(12)

In the above equation we have displayed the contribu-
tions due to the three-loop slope of the Dirac form factor,
the three-loop anomalous magnetic moment of the elec-
tron, and the three-loop photon vacuum polarization func-
tion separately to emphasize a strong cancellation which
occurs between vertex and vacuum polarization correc-
tions. Thanks to this cancellation, the correction turns out
to be quite small numerically.

We now turn to other results available in the literature.
[See Ref. [8] for reference to earlier work. Some of the
numbers in Ref. [8] have been updated according to recent
calculations in Refs. [18–20]. The value of the nonper-
turbative function A�1S� �Za� for Z � 1 is extracted from
Ref. [21] for the self-energy correction and from Ref. [9]
for the vacuum polarization.] For the coefficients Aij and
Bij in Eq. (3) we use
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The only known nonrecoil correction at order O �ma8�
is the triple logarithmic enhanced contribution [11]

DEa2�Za�6 � 2
8
27
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p2n3 log3 1
�Za�2 � 2

28.4
n3 kHz .

This correction is included in the central value for the 1S
Lamb shift quoted below.

Consider now the recoil corrections. Part of these are
already included in Eq. (3) through its dependence on the
reduced mass of the electron. The terms which go beyond
this approximation are
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computed in Refs. [22–24].
The vacuum polarization effects due to muons and had-

rons can be extracted from Ref. [25] and give DEvp �
28.5 kHz for the 1S Lamb shift.

The last contribution in Eq. (2) which has not been con-
sidered so far is the one due to proton structure. The major
part of this correction to the Lamb shift is parametrized
through the proton charge radius but there is also a proton
self-energy correction which goes beyond that approxima-
tion [24]. The complete correction reads

DEproton �
2�Za�4

3n3 	r2
p
m3

r 1
4m3

r

3pn3M2 �Z2a� �Za�4

3

∑
log

M
mr �Za�2 2 logk0�n�

∏
. (13)
1675



VOLUME 84, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 21 FEBRUARY 2000
There are two different values for the proton charge ra-
dius rp � 0.805�11� fm and rp � 0.862�12� fm obtained
in [26,27], respectively, by analyzing the electron proton
scattering data. The smaller value, rp � 0.805�11� fm,
seems to give a serious disagreement between precision
atomic measurements and the theoretical predictions [28].
For this reason we do not consider it here. The data of
Ref. [27], on the other hand, were recently reanalyzed in
[29], where a normalization of the proton charge form fac-
tor at zero momenta transfer was also treated as a free
parameter in the fit. The analysis of Ref. [29] leads to a
larger proton charge radius rp � 0.877�24� fm. The final
value for the 1S shift strongly depends on the value of the
proton charge radius:

DE�1S�theory � 8 172 778�16� �32� kHz , (14)

DE�1S�theory � 8 172 819�16� �66� kHz , (15)

where the values are given for rp � 0.862�12� fm and
rp � 0.877�24� fm, respectively. The first error in all the
above equations is the theoretical uncertainty due to still
uncalculated higher order corrections to energy levels be-
yond the a7 order (see a discussion below). The second
error is due to the uncertainty in the experimental values of
the proton charge radius. The uncertainties in Rydberg and
the fine structure constants are not relevant at the present
level of precision.

Comparing these numbers with the most recent mea-
surement of the 1S-level Lamb shift [7],

DE�1S�exp � 8 172 837�22� kHz , (16)

we conclude that the larger values for the proton charge
radius seem to give an agreement between the theory and
the experiment.

An important part of the error in DE�1S�theory is due
to uncalculated higher order corrections. For the 1S
Lamb shift the uncertainty [28] was estimated to be
about 40 kHz. This number is the linear sum of a 8 kHz
uncertainty in the self-energy correction, the 16 kHz
uncertainty caused by the unknown a2�Za�6 terms, and
the 16 kHz uncertainty due to unknown a3�Za�4 terms.
The result of Ref. [21] removes the first uncertainty and
our calculation of the three-loop slope of the Dirac form
factor removes the last one. The total uncertainty in the
theoretical predictions in the 1S Lamb shift is therefore
reduced to 16 kHz.

Turning the problem around, we note that the small theo-
retical uncertainty on the 1S Lamb shift permits an extrac-
tion of the proton charge radius by comparing experimental
and theoretical results. We then arrive at the precise value
of the proton radius rp � 0.883 6 0.014 fm.

In conclusion, we have computed the three-loop slope of
the Dirac form factor. Thanks to this calculation the theo-
retical uncertainty in the predictions for the 1S Lamb shift
is reduced. Comparison of the theoretical and experimental
results for the 1S-level shift permits an accurate determina-
tion of the proton charge radius. Further improvements in
1676
theoretical predictions for the 1S-level shift would be pos-
sible if subleading a2�Za�6 log2a corrections are calcu-
lated. Only then can the theoretical uncertainty be brought
down to several kHz and can the potential of the recent
measurement of the 1S-2S transition frequency [6] be fully
exploited.
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