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Influence of Dipolar Interaction on Magnetic Properties of Ultrafine Ferromagnetic Particles
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We use Monte Carlo simulations to study the influence of dipolar interaction and polydispersity on
the magnetic properties of single-domain ultrafine ferromagnetic particles. From the zero field cooling
(ZFC)/field cooling (FC) simulations we observe that the blocking temperature TB clearly increases
with increasing strength of interaction, but it is almost not effected by a broadening of the distribution of
particle sizes. While the dependence of the ZFC/FC curves on interaction and cooling rate are reminiscent
of a spin glass transition at TB, the relaxational behavior of the magnetic moments below TB is not in
accordance with the picture of cooperative freezing.

PACS numbers: 75.50.Tt, 75.40.Mg, 75.50.Lk
In recent years, single-domain ultrafine ferromagnetic
particles have received considerable interest, both due
to their important technological applications and their
rich experimental behavior (see [1] for a recent review).
While dilute systems are well understood [2–6], the
experimental results for dense systems are a matter of
controversy [1,7–21]. In dense systems, the mutual
interactions between the magnetic particles play a
dominant role, but, due to experimental difficulties, it is
not clear what the main effects of the interactions are.
This is even true for the most basic interaction here, the
magnetic dipolar interaction. For example, it has not
been clarified yet if an increase in the concentration of
particles leads to an increase in the effective potential
barriers between the easy directions (as suggested in
[9]) or to a decrease (as suggested in [12]), with the
corresponding consequences on related experimental
quantities. It is also not clear if the spin glass behavior
recently reported for dense samples of g-Fe2O3 [14],
e-Fe3N [19], and amorphous Fe12xCx [21] can be
attributed to an interplay between anisotropy and dipolar
interaction, as conjectured in [13].

In order to shed light on the role of the magnetic dipo-
lar interaction, and in particular on its interplay with the
anisotropy of the particles, we have performed extensive
Monte Carlo (MC) simulations. We have concentrated on
perhaps the most basic model for ultrafine ferromagnetic
particles, which assumes coherent magnetization rotation
within a particle and takes into account their anisotropy
and the dipolar interaction between them. From our re-
sults for the zero field cooling (ZFC) and field cool-
ing (FC) susceptibilities we can conclude that (i) the
blocking temperature TB (roughly defined as the tem-
perature where the ZFC susceptibility is at its maximum)
increases with increasing concentration of particles, and
(ii) the Curie-Weiss temperature T0 tends to larger nega-
tive values with increasing concentration. In combina-
tion with simulations of the relaxational behavior (iii) we
find, even in dense systems, no evidence for a spin glass
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transition close to TB and/or for a spin glass phase at
lower temperatures.

In the model we assume that every particle i consists
of a single magnetic domain with all its atomic moments
rotating coherently, resulting in a constant absolute value
j �mij � MSVi of its total magnetic moment �mi . Here, Vi

is the volume of particle i, and MS is the saturation mag-
netization that is supposed to be independent of particle
volume and temperature. The energy of each particle i
is composed of three parts: anisotropy energy (either due
to the shape or the crystalline structure of the particle),
field energy, and interaction energy. For the sake of sim-
plicity, we consider a temperature independent uniaxial
anisotropy
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where K is the anisotropy constant and the unit vector �ni

denotes the easy directions. As usual, the coupling with
the applied field �H is described by
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and the magnetic dipolar interaction between two par-
ticles i and j separated by �rij is given by
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Adding up Eqs. (1)–(3) and summing over all particles,
we obtain the total energy
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In our numerical study, we have considered samples
of N � 64 particles, with volumes Vi drawn from a
normal distribution P�V � ~ exp�2�V 2 V �2��2s

2
V ��,

with the mean volume V fixed and widths sV ranging
from sV � 0 (d distribution) to sV � 0.3V . The
unitless concentration c is defined as the ratio between
the total volume

P
i Vi occupied by the particles and the
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volume V of the sample. We varied the concentration
from the dilute limit (c ! 0) to very dense systems with
c � 0.32c0, where c0 � 2K�M2

S is a unitless material
constant of the order of unity [22].

In order to achieve a liquidlike arrangement of the par-
ticles similar to a ferrofluid without aggregations, the par-
ticle positions were chosen from an inverse MC simulation
procedure in which the particles move freely and inter-
act by a standard Lennard-Jones pair potential [23] with
periodic boundary conditions [24]; see Fig. 1 for the ob-
tained pair correlation function g2�r� [25]. The easy axes
of the particles were chosen randomly. In the subsequent
MC simulation, both positions of the particles and their
easy axes are kept fixed. For treating the long-range dipo-
lar interaction without any truncations we applied periodic
boundary conditions using Ewald’s summation for an in-
finite sphere surrounded by vacuum [24,26].

For studying the time dependent magnetization during
cooling and heating, we employed the standard Metropo-
lis algorithm [27] with local dynamics (see also [28]): In
every step, we select a particle i at random and generate an
attempted orientation �m

�i�
att of its magnetization, chosen in a

spherical segment around the present orientation �m�i� with
an aperture angle du [29]. The attempted orientation is
accepted with probability min�1, exp�2DE�kBT ��, where
DE is the energy difference between attempted and present
orientation, and kB is the Boltzmann constant. After each
trial, the time is incremented by N21, so in one time unit
(one Monte Carlo step) N attempts are made. The mag-
netization along the field is recorded in certain time inter-
vals, and an ensemble average is performed by repeating
the respective simulation for typically 300 samples with
different realizations of spatial arrangements, orientations
of the easy axes, and particle volumes (the latter for the
cases where the size of each particle is not fixed but cho-
sen randomly from a distribution).

FIG. 1. Plot of the pair correlation function g2�r� vs r�r0 of
the liquidlike arrangements obtained by the inverse MC simu-
lation technique. The parameter r0 marks the beginning of the
repulsive wall of the potential. For large distances, the particles
are uncorrelated and g2�r� � 1.
168
First we consider simulations of zero field cooling/field
cooling experiments. In a ZFC experiment, the sample
is first demagnetized at very high temperature and cooled
down in zero field. Then, at very low temperature a small
external field is applied and the sample is heated up at con-
stant rate until well above the blocking temperature. In the
subsequent FC experiment, the small field is maintained
and the sample is cooled down again at the same constant
rate. During the whole ZFC/FC experiment the magneti-
zation M along the field is measured, from which the sus-
ceptibility x follows. In a typical ZFC measurement the
susceptibility xZFC increases with increasing temperature
until the blocking temperature TB is reached. Above TB,
in the superparamagnetic regime, xZFC decreases mono-
tonically with increasing temperature. In the FC experi-
ment the susceptibility xFC coincides with xZFC until the
blocking temperature is reached (since above TB the sys-
tem is able to reach thermal equilibrium within the time
lag between the measurements), and tends to a constant
value at low temperatures. The blocking temperature will
depend on the heating rate, approaching zero at infinitely
slow heating rate.

Our numerical results for the reduced susceptibilities
are in agreement with this picture. We have determined
x � �M�MS���H�HA� from ZFC/FC simulations, for
an applied field H � 0.1HA and a constant tempera-
ture decrease/increase of DT � 0.0245KV�kB every
2000 Monte Carlo steps. Figure 2 shows the effect of
polydispersity on the behavior of xZFC and xFC for (a)

FIG. 2. Plot of the reduced susceptibilities xZFC (open
symbols) and xFC (full symbols) vs reduced temperature
kBT��2KV �: (a) in the dilute limit and (b) for a concentration
c�c0 � 0.128 of particles, for size distribution with widths
sV �V � 0 (open and full circles), 0.15 (open and full squares),
and 0.3 (open and full triangles). The arrows indicate the
respective blocking temperatures TB. In all figures the size of
the symbols roughly corresponds to the error bars.
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systems without dipolar interaction (corresponding to the
dilute limit) and (b) for a dense system (concentration
c�c0 � 0.128). In both cases the curves do almost not
depend on the distribution of particle sizes (sV �V � 0,
0.15, and 0.3). Thus we can conclude that within the
framework of the present model the dynamical behavior of
ultrafine ferromagnetic particles is almost not affected by
a moderately broad volume distribution. In the following,
we restrict ourselves to a constant volume, where the
influence of the dipolar interaction can be worked out
most clearly.

In Fig. 3 we have plotted xZFC and xFC for different par-
ticle concentrations, from the dilute limit to c�c0 � 0.32.
The figure reveals the effect of the dipolar interaction on
the blocking temperature TB: TB increases with increas-
ing concentration. In order to show the effect of the
interaction on the Curie-Weiss temperature T0, we have
plotted, in the inset of Fig. 3, x

21
FC as a function of the

reduced temperature kBT��2KV �. The figure shows that
well above TB, xFC indeed follows the Curie-Weiss law,
xFC ~ �T 2 T0�21, with T0 � 0 in the dilute limit. With
increasing particle concentrations, T0 becomes negative
and its absolute value increases. This result agrees well
with most experimental findings. In some experiments,
however, a decrease of TB with increasing particle con-
centrations has been reported (see [12], and references
therein). Our simulations suggest that this interesting fea-
ture has a different origin than dipolar magnetic interaction
or polydispersity.

In Fig. 4 we are concerned with the question of a possi-
ble spin glass phase below TB. The inset of Fig. 4 shows
the ZFC/FC susceptibilities for two different heating rates

FIG. 3. Plot of the reduced susceptibilities xZFC and xFC vs
reduced temperature kBT��2KV � for monodisperse magnetic
particles in the dilute limit (open circles) as well as for con-
centrations c�c0 � 0.064 (full squares), 0.128 (open triangles),
and 0.32 (full stars). The arrows indicate the respective block-
ing temperatures TB. The inset shows the inverse reduced FC
susceptibility x

21
FC as a function of the reduced temperature

kBT��2KV � for the same parameters; the straight line has a
slope of 3.
(DT � 0.0245KV�kB every 1000 and 8000 Monte Carlo
steps respectively) for a particle concentration c�c0 �
0.128. For the lower rate, TB is shifted towards smaller
values, as expected. Well above TB the curves coincide
while close to TB the curves split, with larger values of
the susceptibility for the slower process. This behavior
together with the increase of TB with increasing concen-
tration (see Fig. 3) is reminiscent of a spin glass transition,
and indeed, the existence of a spin glass transition in sys-
tems of ultrafine particles has been proposed in several
recent articles [10,13,14,19,21]. In order to check if in our
case TB may be associated with a spin glass temperature,
we have studied the relaxational behavior of the suscepti-
bility well below TB, for four different initial states (fully
demagnetized sample, saturated sample, sample after the
ZFC process, and sample after the FC process). As shown
in Fig. 4 all susceptibilities relax towards the same point,
which therefore can be regarded as the equilibrium point.
This feature is not consistent with the assumption of a spin
glass phase where cooperative freezing occurs. We like to
note that in the absence of the anisotropy term, in a system
of spatially disordered dipoles, the existence of a dipolar
glass has been reported [30]. It is an interesting theoretical
problem (but beyond the scope of this work) to find out if
the present system can show or not, for very small finite
anisotropies, a transition to a spin glass phase.

FIG. 4. Relaxational behavior of the reduced susceptibilities
of a system of monodisperse interacting magnetic particles
with concentration c�c0 � 0.128 at a reduced temperature
kBT��2KV � � 0.066 well below the blocking temperature (the
dashed line in the inset indicates this relaxation temperature).
Shown are the relaxation of the susceptibility of (i) a fully
saturated sample (open stars), (ii) a fully demagnetized sample
(full stars), (iii) the system after a ZFC process (open triangles),
and (iv) after a FC process (full triangles). These last two initial
states are marked also in the inset as (a) and (b), respectively.
All susceptibilities relax towards the same value, being larger
than xFC. The inset shows the ZFC/FC curves for two different
cooling rates: DT � 0.0245KV�kB every (i) 1000 MC steps
(full squares) and (ii) 8000 MC steps (open squares). The
points (a) and (b) of the faster experiment were the ones chosen
as initial states for relaxation shown in the main figure.
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In summary, we have studied a simple model for ultra-
fine magnetic particles, which takes into account the most
basic features of the system, anisotropy of the particles and
dipolar interaction between them. We find that the model
describes quite well the overall experimental situation, but
we did not find evidence of a spin glass phase. We can
conclude therefore that the interplay between anisotropy
and magnetic interaction does not lead to a spin glass be-
havior. Other types of interaction that we did not consider
here (e.g., exchange interactions caused by aggregation of
the particles) might be candidates for obtaining frustrated
configurations.
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