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Monte Carlo Simulation with Time Step Quantification in Terms of Langevin Dynamics
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For the description of thermally activated dynamics in systems of classical magnetic moments numeri-
cal methods are desirable. We consider a simple model for isolated magnetic particles in a uniform field
with an oblique angle to the easy axis of the particles. For this model, a comparison of the Monte Carlo
method with Langevin dynamics yields new insight to the interpretation of the Monte Carlo process,
leading to the implementation of a new algorithm where the Monte Carlo step is time quantified. The
numeric results for the characteristic time of the magnetization reversal are in excellent agreement with
asymptotic solutions for the Néel-Brown model.

PACS numbers: 75.40.Gb, 75.40.Mg, 75.50.Tt
Studies of spin dynamics in particulate systems are
currently of significant interest as model systems for
understanding the thermodynamics of the reversal pro-
cess. Brown [1] developed a theoretical formalism for
thermally activated magnetization reversal based on the
Fokker-Planck (FP) equation which led to a high energy
barrier asymptotic formula in the axially symmetric case
of a particle with easy (uniaxial) anisotropy axis collinear
with the applied magnetic field. Since then extensive cal-
culations [2–6] have been carried out in which improved
approximations were found for the axially symmetric
case. Coffey and co-workers [4–6] also derived formulas
for the nonaxially symmetric case, investigating also the
different regimes imposed by the damping parameter
a of the Landau-Lifshitz-Gilbert (LLG) equation. This
work represents an important basis for the understanding
of dynamic processes in single-domain particles. New
experimental techniques which allow for an investigation
of nanometer-sized, isolated, magnetic particles confirmed
this theoretical approach to thermal activation [7].

Unfortunately, the extension of this work to the impor-
tant case of strongly coupled spin systems such as are
found in micromagnetic calculations of magnetization re-
versal is nontrivial, and realistic calculations in systems
with many degrees of freedom would appear to be im-
possible except by computational approaches. These are
currently of two types: (i) calculations involving the di-
rect simulation of the stochastic (Langevin) equation of
the problem, in this case the LLG equation supplemented
by a random force representing the thermal perturbations;
this is referred to as the Langevin dynamics (LD) formal-
ism [8,9]; and (ii) Monte Carlo (MC) simulations [10]
with a continuously variable (Heisenberg-like) Hamilton-
ian [11,12]. The LD approach, although having a firm
physical basis, is limited to time scales of the order of a
few ns for strongly coupled systems. The MC approach is
capable of studying longer time scales involving reversal
over large energy barriers, but has the severe problem of
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having no physical time associated with each step, result-
ing in unquantified dynamic behavior.

Physically, the dynamic behavior of interacting spin sys-
tems is a topic of considerable current interest, much of this
interest being driven by the need to understand spin elec-
tronic devices such as MRAM. The possibility of truly
dynamic models of strongly coupled systems would seem
to be an important factor in the development of a fun-
damental physical understanding. This requires dynamic
studies over the whole time range from ns and sub-ns to
the so-called “slow dynamic” behavior arising from ther-
mally excited decay of metastable states over time scales
from 10–100 s and upwards. It is inconceivable that the
LD technique can be used over the whole time scale and
therefore a truly time quantified MC technique is necessary
in order to allow calculations over the longer time scales
of physical interest. Here we propose a technique for the
quantification of the MC time step and give a supporting
argument which results in a theoretical expression for the
time step in terms of the size of the MC move, and also
gives the validity criterion that the MC time step must be
sufficiently large. Comparison with an analytical formula
for relaxation in the intermediate to high damping limit is
used to verify the theoretically predicted relationship relat-
ing the time step to the size of MC move. This represents
an important first step in the process of deriving a theo-
retical formalism for time quantified MC calculations of
strongly interacting spin systems.

We consider an ensemble of isolated single-domain par-
ticles where each particle is represented by a magnetic mo-
ment with energy

E�S � � 2dV S2
z 2 msB ? S , (1)

where S � m�ms is the magnetic moment of unit length,
B � Bxx̂ 1 Bzẑ represents a magnetic field under an ar-
bitrary angle c to the easy axis of the system, d is the
uniaxial anisotropy energy density, and V is the volume of
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the particle. Throughout this Letter we use the material pa-
rameters V � 8 3 10224 m3, d � 4.2 3 105 J�m3, mag-
netic moment ms � 1.12 3 10217 J�T.

The LLG equation of motion with LD [1] is

�S � 2
g

�1 1 a2�ms
S 3 ���H�t� 1 aS 3 H�t���� , (2)

where g � 1.76 3 1011�Ts�21 is the gyromagnetic ra-
tio, H�t� � z �t� 2

≠E
≠S , and z is the thermal noise with

�zi�t�� � 0 and �zi�t�zj�t0�� � dijd�t 2 t0�2akBTms�g.
i and j denote the Cartesian components.

The equation above is solved numerically using the
Heun method [9]. Also, it is possible to obtain analytically
asymptotic solutions for the escape rate which have been
extensively compared with the exact numerical solutions
from the corresponding matrix form of the FP equation for
a wide range of parameters and nonaxially symmetric po-
tentials [4–6].

Both of our simulations, MC as well as LD, start with
the magnetic moments in the z direction. The magnetic
field has a negative z component so that the magnetization
will reverse after some time. The time that is needed for
the z component of the magnetization to change its sign
averaged over a large number of runs (N � 1000) is the
characteristic time t which corresponds to the inverse of
the escape rate following from exact numerical solutions
of the corresponding FP equation.

For the MC simulations we use a heat-bath algo-
rithm with acceptance probability pa�DE� � 1��1 1

exp�DE�kBT��. The trial step of our MC algorithm is
a random movement of the magnetic moment within a
cone with a given size. In order to achieve this efficiently
we construct a random vector with constant probability
distribution within a sphere of radius R. This random
vector is added to the initial moment and subsequently the
resulting vector is normalized.

The size of the cone R of our algorithm influences the
time scale the method simulates. We investigate the influ-
ence of R on our MC algorithm by varying R and calcu-
lating t. As usual in a MC procedure the time is measured
in Monte Carlo steps (MCS). For our calculation we use a
field of jBj � 0.2 T and an angle of c � 27± to the easy
axis. The resulting energy barrier is DE � 8.2 3 10219 J;
the temperature we chose for Fig. 1 is DE�kBT � 3.3. As
Fig. 1 demonstrates, it is t � R22. This dependence can
be understood by considering the moments as performing
a random walk where R is proportional to the mean step
width. Having understood that the MC time can be set by
choosing an appropriate size of the step width we search
for a relation for R such that one MCS corresponds to a
real-time interval, in the sense of LD.

MC methods calculate trajectories in phase space fol-
lowing a master equation which describes the coupling of
a system to the heat bath. Hence, only the irreversible part
of the dynamics of the system is considered [13]— there
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FIG. 1. Characteristic time versus trial step width for a MC
simulation. The solid line is fitted, yielding t � R22.

is no precession of the moments since no equation of mo-
tion is solved during the simulation. Nevertheless, in the
following we will argue that the exact knowledge of the
movement of the single moments is not necessary in order
to describe the effects of thermal activation in an ensemble
of systems under the following conditions: (i) the relevant
time scales are larger than the precession time tp of the
moments; (ii) the system is locally in equilibrium on these
time scales. This is the case in the high damping limit
where the energy dissipation during one cycle of the pre-
cession is considerably large so that the system relaxes (to
the local energy minimum) on the same time scale tr 	 tp ,
or for large enough times where always the high damping
limit is observed [5].

In Fig. 2 we present the time evolution of our sys-
tem in phase space, �Sx , Sy�, following from a simula-
tion of the LLG equation for high damping, a � 1. We
use DE�kBT � 8.2, a rather low temperature so that the
characteristic time t for the escape from the local en-
ergy minimum is of the order of 1026 s (see also Fig. 3).
The spin-precession time is tp � 9 3 10211 s here. The
simulation starts close to the local energy minimum with

FIG. 2. Configuration in phase space �Sx , Sy� of an ensemble
of 20 particles following from a LD simulation for a � 1; see
text for details.
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FIG. 3. t versus inverse temperature: comparison of interme-
diate to high damping (IHD) asymptote, LD simulation, and MC
simulation.

Sx � Sy � 0, Sz � 1 and the solid line shows the tra-
jectory of one moment over a time interval of Dt � tp .
The 20 points are the positions of an ensemble of 20
moments after the same time. As one can see, the mo-
ments show no significant precession (the precession of an
undisturbed moment, i.e., without relaxation and fluctua-
tions is indicated by the circle around the energy mini-
mum at Sy � 0, Sx 	 0.22). The small dots represent
1000 states of the ensemble for t , 6 3 tp . Altogether,
Fig. 2 demonstrates that in the high damping case already
after time periods of only a few tp the moments are un-
correlated and the ensemble reaches a local equilibrium
configuration (remember that the time scale to leave the
local equilibrium is much larger here so that Fig. 2 shows
only the local short-time equilibration, not the escape from
the local energy minimum).

We will show that this high-damping scenario can also
be simulated by a MC simulation and we will now derive
a relation for R in order to quantify the MC time step.
The intention is to compare the fluctuations which are es-
tablished in the MC technique within one MCS with the
fluctuations within a given time scale associated with the
linearized LLG equation. Close to a local energy mini-
mum one can write the energy, given that first order terms
vanish as

E 	 E0 1
1
2

X
i,j

AijSiSj , (3)

where the Si are the variables representing small devia-
tions from equilibrium. In our system, for Bx � 0 we
find equilibrium along the z axis, leading to variables Sx

and Sy . The energy increase DE associated with fluc-
tuation in Sx and Sy is DE 	 1

2 �AxxS2
x 1 AyyS2

y �, with
Axx � Ayy � 2dV 1 msBz . Rewriting the LLG equa-
tion in the linearized form, �Sx � LxxSx 1 LxySy , �Sy �
LyxSx 1 LyySy , it has been shown [14] that the correlation
function takes the form �Si�t�Sj�t0�� � mijdi,jd�t 2 t0�.
Dirac’s d function is here an approximation for exponen-
tially decaying correlations on time scales t 2 t0 that are
much larger than the time scale of the exponential decay
tr . The covariance matrix mij can be calculated from the
system matrices A and L as [14] mij � 2kBT �LikA21

kj 1

LjkA21
ki �. For our problem a short calculation yields mxx �

myy � 2kBT
ag

�11a2�ms
. Integrating the fluctuating magneti-

zation Sx�t� over a finite time interval Dt we obtain

�S2
x� � mxxDt � 2kBT

ag

�1 1 a2�ms
Dt , (4)

representing the fluctuations of Sx averaged over a time
interval Dt following from the linearized LLG equation.

Next, we calculate the fluctuations �S2
x� during one MCS

of a MC simulation. This is possible if we assume that all
magnetic moments are initially in their equilibrium posi-
tion. For our MC algorithm described above the proba-
bility distribution for trial steps with step width r �q

S2
x 1 S2

y is pt � 3
p

R2 2 r2��2pR3�. For the accep-

tance probability we use DE�r2� from Eq. (3). Hence, for
the fluctuations within one MC step it is

�S2
x� � 2p

Z R

0
r dr

r2

2
pt�r�pa�r� �

R2

10
1 O �R4� ,

(5)

where the last line is an expansion for small R. By equal-
izing the fluctuations within corresponding time intervals
we find the relation

R2 �
20kBTag

�1 1 a2�ms
Dt . (6)

Note from our derivation above it follows that one time
step Dt must be larger than the intrinsic time scale tr of
the relaxation. This means, as already mentioned above,
that the Monte Carlo method can work only on time scales
that are much larger than any microscopic time scale of
a precession or relaxation (to local equilibrium) of the
moment.

In principle, Eq. (6) gives the possibility to choose the
trial step for a MC simulation in such a way that 1MCS cor-
responds to a real-time interval, say Dt � 10212 s. How-
ever, there are of course restrictions for possible values of
R, like R , 1. Also, R should not be too small since then
a Monte Carlo algorithm is inefficient. Therefore, either
one has to choose such a value for Dt so that R takes on
reasonable values (these will usually be of the order of
10212 s) or one uses a reasonable constant value for R,
say 0.1, and uses Eq. (6) to calculate Dt as the real-time
interval corresponding to 1MCS. In the following we use
the first method since it turns out to be very efficient to
change R with temperature. However, we confirmed that
the other method yields the same results.

To test the validity of our considerations we performed
MC simulations with an algorithm using a trial step accord-
ing to Eq. (6) with Dt 	 6 3 10212 s (the inverse value of
g; in other words, the time in the LLG equation is rescaled
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by g). For Fig. 3 we set a � 1 and compare the data for
t�T � following from our MC simulation with results from
LD simulations and with the IHD asymptote [5,6], namely,

t �
2pv0

V0v2
eb�V02V2� �

2pv0

V0v2
eDE�kBT , (7)

where v0 and V0 are the saddle and damped saddle angu-
lar frequencies which have been defined in Eqs. (21) and
(22) of Ref. [6] explicitly. v2 is the well angular frequency
for the deeper of the two potential wells and is defined in
Eq. (20) of Ref. [6]. All have been defined in terms of
the coefficients of the truncated Taylor series representa-
tion of the energy equation described in detail in Sec. V
of Ref. [4] [particularly Eqs. (59)–(64)]. For the purpose
of comparison with MC and LD simulations, we consider
one escape path only, eb�V02V2�, where b � V�kBT and
V0 2 V2 is the energy described by Eq. (62) of Ref. [4].
For our purposes, b�V0 2 V2� may be represented by
DE�kBT . The validity condition for the IHD formula is
aDE�kBT ¿ 1, where DE�kBT . 1 which have been
satisfied in all cases represented here.

From Fig. 3 it is clear that the LD data agree with the
asymptote above. For higher temperatures the asymptote
is no longer appropriate. Here, the numerical data for t

tend to zero for T ! ` as one expects. The MC data
deviate slightly and are roughly 10% larger. However,
considering the fact that to the best of our knowledge this is
the first comparison of a “real-time MC simulation” with
LD simulations and asymptotic formulas, the agreement
is remarkable, especially taking into account the simple
form of Eq. (6) underlying our algorithm and that there is
no adjusted parameter in all our calculations and formulas.

Since we expect that our MC procedure leads to a high
damping limit we also tested the a dependence of t. Fig-
ure 4 shows the corresponding data for the same parame-
ter values as before and DE�kBT � 3.3. The figure shows
that the MC data converge to the IHD formula and to the
data from LD simulation for large a. Even the small 10%
deviation of the MC data mentioned before (Fig. 3) van-
ishes in the limit of larger a.

To summarize, considering a simple system of isolated
single-domain particles, we derived an equation for the
trial step width of the MC process so that one step of the
MC algorithm can be related to a certain time interval of
the LLG equation. Testing this algorithm we found agree-
ment with data from LD simulation as well as with inter-
mediate to high damping asymptotes for the characteristic
times of the magnetization reversal. Even though our al-
gorithm was derived only for the special system which we
consider here, the arguments we brought forward might
be the fundament even for the MC simulations of more
complicated systems. Work following these lines is un-
der progress and first results for an interacting spin system
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FIG. 4. t versus damping constant: comparison of IHD
asymptote, LD simulation, and MC simulation.

using the same MC step width within a single spin flip
method confirm the validity of our approach [15].
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