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Discrete Coherent Amplification of Oscillations by Nonresonant Forcing
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A new mechanism of generation of oscillations in a linear forced oscillatory system is found. Natural
oscillations may be generated at a “sharp” pulse (rapid variation) of the natural frequency. In this
process oscillations are generated by nonresonant forcing, e.g., by the action of a constant, nonperiodic
or periodic force (with driving frequency much less than the natural one). Repetitive pulses of the natural
frequency result in emergence of oscillations that interfere and may give a powerful resultant output.
These phenomena relate to a basis of the theory of open linear oscillatory systems.
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A variety of phenomena of a highly different nature
(classical and quantum mechanical, electromagnetic,
chemical, biological, etc.) exhibit oscillatory behavior.
Undoubtedly, any novelty in the theory of oscillations will
have various applications in many branches of the natural
sciences. This becomes increasingly true if a novelty
relates to the class of open linear oscillatory systems and
has to do with the basis of the theory. This is the case
for the topic of the present Letter. We present a new
mechanism of generation of the natural oscillations in a
forced linear oscillatory system and demonstrate one of
the possible outcomes of this phenomenon—a discrete
coherent amplification of oscillations.

Phenomena of the generation of natural oscillations in
open linear oscillatory systems may be tentatively classi-
fied into three essentially different types. The simplest
of these is the resonant phenomenon—resonance of the
periodic external force and the natural oscillations of the
system with constant natural frequency (see, e.g., Ref. [1]).
Also well understood is the generation of oscillations due
to the parametric resonance. In this case the open charac-
ter of the system is reduced to the periodic variation of the
natural frequency itself (see, e.g., Refs. [1,2]). The phe-
nomenon of the third type is the nonresonant (impulsive)
generation of oscillations caused by a pulse in the external
force (see, e.g., Refs. [3,4]). A new and in this sense a
fourth type of generation phenomenon is described in the
present Letter. To get insight into the nature of this phe-
nomenon we first recapitulate the nonresonant phenome-
non introduced in Ref. [5].

The phenomenon of an abrupt emergence of waves
from vortices has been revealed in the study of linear dy-
namics of perturbations in a simplest hydrodynamical
shear flow—unbounded parallel compressible flow with
uniform shear of velocity—which allows for only one
mode of a wavelike solution: acoustic waves. The dynam-
ics of perturbations in this flow has been studied in the
framework of the nonmodal approach. Originated by Lord
Kelvin in 1887 (see Ref. [6]) this approach has become
extensively used in hydrodynamics since the 1990’s (see
0031-9007�00�84(7)�1619(4)$15.00 ©
Refs. [7–11]). Under this approach the linear dynamics
of perturbations in the flow may be described in terms of
a linear forced oscillatory system:

C̈�t� 1 v2�t�C�t� � f�t� , (1)

where v�t� and f�t� are the time dependent natu-
ral frequency and external force, respectively. Mean flow
velocity shear results in the following time dependence
of the system parameters: v2�t� ~ �1 1 �t 2 t��2�,
f�t� ~ �t 2 t��, and �f�t��f�t� ø v�t�, i.e., the natural
frequency has a minimum at t � t� and the external
force is a slowly varying, nonperiodic function of time.
Equation (1) describes two different modes of perturba-
tions: (1) acoustic wave mode (natural oscillations of the
system)—f�t� that is described by the general solution of
the corresponding homogeneous equation; (2) vortex/ape-
riodic mode—c�t� that is driven by f�t� and is associated
with the particular solution of the equation, i.e., originates
from the equation inhomogeneity. In a general case the
complete solution of Eq. (1) takes the following form:
C�t� � f�t� 1 c�t�. It has been shown numerically that
if the aperiodic solution of the system is present the fast
variation of the natural frequency �j �v�t�j�v2�t� . 0.2�
results in an abrupt emergence of natural oscillations at the
point in time when the natural frequency passes through
its minimal value (see Ref. [5]). Analogous phenomena
have been found in magnetohydrodynamic as well as in
plasma shear flows [12,13]. The discussed phenomenon
may be comprehended as a “birth” of natural oscillations.
Importantly, the outlined phenomenon is described by a
quite general model equation of an open linear oscillatory
system [see Eq. (1)] that is externally affected in two
ways: (i) explicitly, by a slowly varying driving force;
(ii) parametrically, by a temporal variation of the natural
frequency.

The aim of this Letter is to describe a model of a line-
ar forced oscillatory system that allows for a new type of
the generation phenomenon that we have called the oscilla-
tion birth phenomenon, to get insight into the nature of this
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phenomenon, and to study the effect of repetitive pulses of
the natural frequency in such a system. For these pur-
poses numerical as well as qualitative perturbative analy-
sis is used. We consider open linear oscillatory systems
[see Eq. (1)] with pulsing natural frequencies, i.e., with
frequencies that rapidly vary during a limited time interval.
Therewith the external force is constant or slowly varying
in time: �f�t��f�t� ø v�t�. Further in our exploration we
consider that only the particular (aperiodic) solution is ex-
cited initially: C�0� � c�0�, �C�0� � �c�0�.

First, we present the results of the numerical calcula-
tions. The dynamics of the model oscillatory system with
a single pulse in the natural frequency and a constant ex-
ternal force is shown in Fig. 1: f�t� � 1 and v2�t� �
0.5 1 0.2��1 1 �t 2 t��2�. The initial value of the par-
ticular solution is chosen using the following approximate
form: c�0� � 1�v2�0�, �c�0� � 0. The accuracy of this
choice is defined by the small parameter j �v�0�j�v2�0� but
may be increased using a numerical iterative method. The
numerical results show the generation of natural oscilla-
tions at the natural frequency pulse, at t � t�. The further
dynamics of the generated portion of oscillations [f�t�]
is independent from the forcing and may be described by
the equation of free oscillations—the homogeneous part
of Eq. (1).

Similar results are obtained for periodic forcing [ f�t� ~

cos�Vext�], when the frequency of the driving force is
much smaller than the natural one [Vex ø v�t�]. The
calculations also show that the amplitude of the emerged
oscillations increases with growth of the “sharpness” of the
effective pulse in the function f�t��v2�t�.

FIG. 1. The solution of Eq. (1) C�t� and its first derivative
�C�t� are presented on graphs (a) and (b), respectively. Graph

(d) shows that the natural frequency of the system undergoes
a pulse type variation at t � t� � 100. Graph (c) shows the
aperiodic [c�t�, top graph] and the oscillating [f�t�, bottom
graph] components of the solution individually. The oscillatory
and aperiodic solutions are split using the symmetry properties
of these solutions (see Ref. [5]). The abrupt emergence of the
oscillations is traced from the dynamics of f�t�.
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To interpret the physics of the described phenomenon
we carry out a perturbative analysis of Eq. (1). We con-
sider a sample case of a linear forced oscillatory system.
The external force is constant and the natural frequency is
constant apart from the pulse type variation in the vicinity
of t � t� with duration Dt. Formally

f�t� � f0 � const,

v2�t� � v2
0�1 1 ea�t��, e ø 1 , (2)

Ω a�t� � 0, when jt 2 t�j . Dt�2,
ej �a�t�j ø v0, when jt 2 t�j , Dt�2,

æ

where e is a parameter that is small enough to ensure
the applicability of the perturbative analysis, and a�t� is
the continuous function characterizing the temporal varia-
tion of the natural frequency. We expand the full solution
C�t� and its general [f�t�] and particular [c�t�] compo-
nents in e,

C�t� � C0�t� 1 eC1�t� 1 · · · . (3)

Retaining the zero and first terms in e, Eqs. (1), (2), and
(3) yield

C̈0�t� 1 v2
0C0�t� � f0 , (4)

C̈1�t� 1 v2
0C1�t� � 2v2

0a�t�C0�t� . (5)

Consider that initially, before the pulse of the natural fre-
quency [when t , t� 2 Dt�2 and a�t� � 0], the natural
oscillations are absent and internal restoring and external
forces compensate each other:

f�t� � f0 � 0 when t , t� 2 Dt�2 ,

C0 � c0 � f0�v2
0 , c̈0 � 0 .

(6)

The pulse of the natural frequency results in a correspond-
ing pulse of the source term in Eq. (5): 2v

2
0a�t�c0 �

2f0a�t�. Hence, under some circumstances the natural
frequency variation may result in the generation of natural
oscillations if the particular solution is present (c0 fi 0).
Conditions for the effective generation of the oscillations
may be obtained using the Fourier expansion of quantities
in Eq. (5):

Ω
C̃1�s�
ã�s�

æ
�

Z `

2`
dt

Ω
C1�t�
a�t�

æ
exp�2ist� . (7)

Hence, Eqs. (5), (6), and (7) yield

C̃1�s� �
f0ã�s�

�s2 2 v
2
0�

. (8)

Generally, the resonance needs ã�v0� fi 0. Moreover, an
efficient resonance needs a noticeable value of ã�v0�. As-
suming a simple form of the function a�t� and the increase
of jã�s�j with a decrease of jsj we obtain the condition
necessary for an effective generation of natural oscilla-
tions: Ds ¿ v0, where Ds is the spectral width of the
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frequency pulse. Using the estimation of the pulse dura-
tion Dt � 1�Ds, we reach the following condition:

v0Dt ø 1 . (9)

In other words, the generation of natural oscillations may
occur at a sharp pulse of the natural frequency, when the
period of the oscillations substantially exceeds the dura-
tion of the natural frequency pulse itself. This estimate of
the natural frequency pulse has been confirmed using the
numerical calculations. Generally, numerical calculations
show that the amplitude of the excited natural oscillations
grows with the sharpness of the natural frequency pulse.
(However, the above qualitative perturbative analysis is ap-
plicable only in particular cases when the rapidly varying
part of the natural frequency is not large.) Notwithstand-
ing the fact that Eqs. (4)–(9) are obtained for a constant
external force, they also well approximate the case of a
slowly varying external force �Vex ø v0� well.

What will be the effect of repetitive pulses of the natural
frequency in a linear forced oscillatory system?

Obviously, oscillations will be excited at every suf-
ficiently “sharp” pulse of the natural frequency. The
emerged portions of oscillations that are independent from
further forcing will linearly interfere. The amplitude of the
generated natural oscillations of the system will be defined
by the interference of the previously emerged oscillations.
Hence, every subsequent pulse of the natural frequency
will increase or decrease the amplitude of the natural
oscillations depending on the phase difference between the
previously generated and the emerged portion of oscilla-
tions. Suppose, that regular repetitive pulses of the natural
frequency excite coherent portions of oscillations. In this
case oscillations that emerged at the different pulses are in
phase. Interference of such portions will result in a simple
sum of their amplitudes. Hence, the amplitude of the
natural oscillations will grow proportionally to the number
of pulses (fn � nf0) and the energy—proportionally to
the squared number of pulses (En � n2E0). Thus, regular
repetitive pulses of the natural frequency may lead to a
powerful process of stepwise, intrinsically discrete ampli-
fication of the natural oscillations by nonresonant forcing.
In this sense, the presented amplification process is clearly
distinguishable from another phenomenon caused by a
temporal variation of the natural frequency: the parametric
resonance. The amplification of oscillations due to the
parametric resonance is continuous and proceeds smoothly
in time, while the discrete coherent amplification proceeds
demonstratively stepwise.

Further we use numerical analysis to confirm the above
qualitative results. We consider linear oscillatory systems
with a natural frequency having regular repetitive pulses.
For simplicity we use the periodic natural frequency
modeled by the following equation: v2�t� �
0.5�1 1 e��e 1 1 1 cos�2pt�Ti���. It undergoes a
rapid variations repeating in every time interval Ti . The
FIG. 2. Graph (a) presents the solution of Eq. (1) C�t� at
the constant external force. The natural frequency of the sys-
tem is presented on graph (b). Here f0 � 2, Ti � 88.5, and
e � 0.0001. The coherent excitation of oscillations is explic-
itly seen from (a) and is provided by the coherence parameter
v0Ti � 20p.

sharpness of the frequency pulses is defined by the pa-
rameter e. Coherent generation of oscillations is reached
by selecting the values of the parameter v0Ti . Generated
oscillations are in phase when this parameter is a multiple
of 2p. In all cases this parameter is taken high enough
to exclude the parametric resonance: v0Ti ¿ 1. The
cases of the constant [ f�t� � f0] and periodic external
force [ f�t� � f0 cos�Vext�] are presented in Figs. 2 and
3, respectively. In the latter case the frequency of the
external force is taken to be much less than the natural
one [Vex ø v�t�]. Discrete coherent amplification
of the natural oscillations has clearly occurred in both
cases (see Figs. 2 and 3). The total energy of natural
oscillations is calculated using the following approximate

FIG. 3. Graph (a) presents the solution of Eq. (1) C�t� at
the periodic external force. The natural frequency of the sys-
tem is presented on graph (b). Here f0 � 1, Vex � 0.01,
Ti � 114.11, and e � 0.0001. Different from Fig. 2, the am-
plification of the natural oscillations occurs on the background
of the adiabatic response to the periodic external force.
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FIG. 4. The total energy of natural oscillations vs time at the
same parameters as in Fig. 2 is shown for the longer time period.
The total energy of oscillations grows stepwise, proportionally
to the square of the pulse number.

form: E�t� � � �f�t��2 1 v2�t�f2�t�. The power of the
amplification process is demonstrated in Fig. 4.

The presented phenomenon of the generation of natural
oscillations principally differs from the classical resonant
one. It is also different from the nonresonant phenomenon
caused by the “push”—the pulse of the external force.
In the latter case the oscillations are fed directly from a
pulsing external force, i.e., the energy of the generated
oscillations is determined by the pulse source power. With
regard to the presented phenomenon, it is initiated only
by the pulse source: Initially, there is a tense balance
between the internal restoring and external forces. The
natural frequency pulse breaks this balance and triggers the
excitation process by activating the internal restoring and
external forces of the system. Specific to the phenomenon
is that the natural frequency pulse needs much less energy
than the pumping work done in the system to generate
oscillations. Actually, it initiates the release of the stress
energy that is created by the external forces. Generally
speaking, it appears that the parametrical pulse type effect
on the oscillatory system under some circumstances should
result in a much more powerful response than the explicit
effect of the analogous external force.

Finally we shortly summarize the presented study. We
have found a new type of generation of natural oscillations
in open linear oscillatory systems. Emergence of the
natural oscillations (birth of the oscillations) occurs in os-
cillatory systems that are externally affected in two ways:
explicitly, by a constant or slowly varying driving force,
and parametrically, by a rapid variation (sharp pulse) of
the natural frequency when the period of the natural oscil-
lations well exceeds the duration of the pulse itself. The
natural frequency pulse breaks the system balance and trig-
gers the excitation of natural oscillations that are pumped
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directly from the nonresonant driving force. Regular
repetitive pulses of the natural frequency of the forced os-
cillatory system may lead to a powerful resultant response
at some parameters of the system. This amplification
process is a result of the discrete coherent summing of
the excited portion of oscillations. Therewith, the fre-
quency of the generated oscillations may be qualitatively
higher than the frequency of the initiating pulsing source.
Characteristic features of the presented amplification
process show that it may be easily realized in laboratory
experiments for a wide spectra of oscillations. The general
nature of the presented phenomenon ensures its essential,
and, at times, exotic manifestations in nature.
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