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Classical Information and Distillable Entanglement
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We establish a quantitative connection between the amount of lost classical information about a quan-
tum state and the concomitant loss of entanglement. Using methods that have been developed for the
optimal purification of mixed states, we find a class of mixed states with known distillable entanglement.
These results can be used to determine the quantum capacity of a quantum channel which randomizes
the order of transmitted signals.

PACS numbers: 03.67.–a, 03.65.Bz
The development of quantum information processing in
recent years has shown that quantum information, and, in
particular, quantum entanglement, allow for the realization
of applications that are not possible classically [1]. Clas-
sical information has, however, not become obsolete as a
simple limiting case of the more general theory. In fact,
there are interesting connections between the amount of
quantum entanglement [2–4] that is held by two parties
and the classical information that is available about the
jointly held system [5]. An extreme example would be
one where the two parties Alice and Bob are sharing an
equal mixture of two Bell states. Being completely igno-
rant about the identity of the state, the density operator
describing the system can also be described as an equal
mixture of two product states, which implies that Alice and
Bob share no entanglement at all. However, given the one
bit of information about the identity of the state, they share
one ebit of entanglement (one maximally entangled state
between two qubits). While the exact relation between the
amount of classical information required per gained ebit
is unknown (see also [5]), this example illustrates that the
retrieval of classical information can lead to an increase
in the usable entanglement. Quite analogously, the loss of
classical information will usually reduce the amount of en-
tanglement held between two parties. In this paper we will
consider a particularly clear way in which classical infor-
mation is lost. Surprisingly, for the resulting class of mixed
states the distillable entanglement can be determined. This
example can also be interpreted as a noisy quantum chan-
nel which randomizes the order of transmitted signals. Us-
ing the results of this paper, we are able to determine the
quantum capacity of such a quantum channel.

Imagine two spatially separated parties, Alice and Bob,
who are holding two entangled pairs of particles which
they would like to use later on, for example, to implement
some quantum communication protocol. As Alice and Bob
share two pairs of identical particles, they need a classical
record about the order of the particles. This means that it is
known which of Alice’s particles is entangled with which
particle of Bob (see left part of Fig. 1 which represents
the mixed state of apparatus and system where the ancilla
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allows one to determine the order of the particles). Now
imagine that, by some misfortune (e.g., the particles in a
transmission arrive in random order), this classical record
is destroyed, i.e., the ancilla is unavailable. In that case,
the state of the two pairs kept by Alice and Bob is an equal
mixture between two possible states: one where the first
of Alice’s particles is entangled with the first of Bob’s par-
ticles and another where the first of Alice’s particles is en-
tangled with the second of Bob’s particles. In the context
of a quantum channel, one would have a situation where
signals change their order randomly. The natural question
for Alice and Bob is as follows: Are they still holding
quantum mechanical entanglement and, if yes, how much?
For example, what is the capacity of the associated quan-
tum channel? Let us state the issue more formally.

When information DI about the order of a number of
entangled quantum systems is lost, is the resulting state
of any use for quantum communication purposes? How
much entanglement DE � Ebefore 2 Eafter has been de-
stroyed and what can be said about the ratio DE�DI?

FIG. 1. In the left half of the figure, system and ancilla are in
a mixed state. The ancilla allows one to determine the order of
the particles. The first particle of Alice is entangled with either
the first or the second particle of Bob—each with probability
p � 1

2 . On the right-hand side, the ancilla is lost and one cannot
determine the order anymore. The information that the ancilla
had about the systems can in this case be quantified by the
mutual information between system and ancilla [see also [6]
and discussion of Eq. (8)].
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It is this question that we will investigate in this Let-
ter to further explore the connection between classical and
quantum information. First, we will answer the special
case in which Alice and Bob are holding two pairs of
maximally entangled states. Subsequently, we will solve
the case of an even number of copies of pairs of arbitrar-
ily entangled particles. These results then give rise to a
bound for the ratio DE�DI in a more general situation.
The concept of entanglement which is employed in the
following is that of distillable entanglement ED [2,4,7,8]
with respect to separable operations [9]. This means that
we are interested in the maximal rate with which entangle-
ment purification can obtain maximally entangled states
from a state which has arisen due to the loss of classical
information.

Example.—Consider the situation where Alice and Bob
share two pairs of two-level systems— i.e., qubits—each
in a maximally entangled state of the form jc0� � �j00� 1

j11���
p

2. In this way they are sharing two ebits of entan-
glement. Now Bob loses the information about the order
of his quantum systems. This means that Bob does not
know whether his two particles are in the original order or
have been permuted (see right half of Fig. 1).

Let jc1� �c1j be the state of the qubits labeled 1, 2,
3, and 4 in the original situation (see Fig. 1). 1 and
3 are Alice’s qubits, Bob’s qubits are numbered 2 and
4. In the computational basis jc1� � �j0000� 1 j0011� 1

j1100� 1 j1111���2, while in the permuted case where
the role of 2 and 4 is interchanged the state is jc2� �
�j0000� 1 j0110� 1 j1001� 1 j1111���2. As a result of
the loss of the order of the particles on Bob’s side, the
composite quantum system is now described by the den-
sity operator,

s � �jc1� �c1j 1 jc2� �c2j��2 . (1)

It is now natural to ask how much entanglement is still
accessible to Alice and Bob, i.e., how much distillable
entanglement the state s holds. To solve this question
consider the spectral decomposition of s given by

s �
1
4
jf1� �f1j 1

3
4
jf2� �f2j , (2)

where

jf1� � �j0011� 2 j0110� 2 j1001� 1 j1100���2 , (3a)

jf2� � �2j0000� 1 j0011� 1 j0110�

1 j1001� 1 j1100� 1 2j1111���
p

12 . (3b)

In the basis of angular momentum eigenstates jj, m� with
j � 0, 1; m � 21, 0, 1, which is given by

j1, 21� � j00�, j1, 1� � j11� , (4a)

j1, 0� � �j01� 1 j10���
p

2 ,

j0, 0� � �j01� 2 j10���
p

2 ,
(4b)
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the eigenstates jf1� and jf2� read

jf1� � j0, 0� j0, 0� , (5a)

jf2� � �j1, 21� j1, 21� 1 j1, 0� j1, 0�

1 j1, 1� j1, 1���
p

3 . (5b)

Here, the first ket corresponds to Alice’s qubits, the second
ket to Bob’s.

An upper bound [4,7] for the distillable entanglement is
given by the relative entropy of entanglement [2,4] ER�s�
of s which in turn is smaller than or equal to the relative
entropy with respect to any separable state r. Hence, the
distillable entanglement ED�s� of s is bounded by

ED�s� # S�sjjr� �
3
4

log3 , (6)

where the disentangled state r is chosen as r �
1
4

P1
j�0

Pj
m�2j jj, m� jj, m� �j, mj �j, mj. Surprisingly, it

turns out that the upper bound given in Eq. (6) can indeed
be achieved.

In the optimal distillation protocol Alice performs a
von-Neumann projective measurement with the two pos-
sible projectors A1 � j0, 0� �0, 0j and A2 �

P1
m�21 jj �

1, m� �j � 1, mj, while Bob remains inactive, i.e., B2 �
�B. With probability p1 � 1�4 they obtain the normal-
ized output state jf1� �f1j, which is a product state and
of no further use. With probability p2 � 3�4 they obtain
jf2� �f2j which has log3 ebits of entanglement. The av-
erage number of maximally entangled states that can be
distilled from s is given by

ED�s� � �3�4� log3 � 1.189 . (7)

As this realizes the bound Eq. (6), it is the maximally pos-
sible value [10]. It is worth noting that this value is greater
than one. Hence, less than one ebit of entanglement is
erased due to the loss of the classical information about the
order. Now we need to compute the loss of classical infor-
mation when the ancilla is erased. What is the information
that the ancilla possesses about the order of the systems?
If we have no access to the ancilla, we see an equal mixture
between the nonorthogonal states jc1� and jc2�, each cor-
responding to a particular piece of classical information,
namely, no change or change of order. We know from
Schumachers noiseless coding theorem (in the case of ini-
tially mixed states we have to employ the accessible infor-
mation [11]) that the amount of classical information about
the order encoded in this way equals S�s� � 2tr�s logs�
with s as in Eq. (1). This quantifies our classical uncer-
tainty about the order of the particles. If we have access
to the ancilla, then all our uncertainty is removed. There-
fore the ancilla possesses S�s� of classical information
about the order of the systems. It is this information
DI � S�s� that is lost when the ancilla is discarded [6].
As a result we find

DED

DI
� 1 . (8)
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The above scenario can be generalized to the situation
where Alice and Bob initially do not hold maximally entan-
gled states but pure states of the type aj00� 1 bj11� [12]
with a given degree of entanglement. This case is interest-
ing since it leads to an operationally defined one parameter
class of states for which the distillable entanglement with
respect to separable operations can be analytically com-
puted. Here we consider s � �jc1� �c1j 1 jc2� �c2j��2
with

jc1� � a2j0000� 1 abj0011�

1 abj1100� 1 b2j1111� , (9)

jc2� � a2j0000� 1 abj0110�

1 abj1001� 1 b2j1111� , (10)

where a [ �0, 1�, b �
p

1 2 a2. Following the previous
calculation, we find that the distillable entanglement is

ED�s� � ER�s�

� �1 2 a2b2� log�1 2 a2b2�

2 �a4 log a4 1 b4 logb4 1 a2b2 loga2b2� .
(11)

Since the entanglement of the initial pure state was given
by the entropy of the reduced states of Alice or Bob, that is,
by 22�a2 loga2 1 b2 logb2�, again, DED�DI � 1 for
all a [ �0, 1�. Of course, Eq. (11) reduces to ED�s� �
�3�4� log3 for a � b � 1�

p
2.

The example we have presented here leads to a more
general proposition which we are going to prove here. We
restrict the argument to the case where Alice and Bob are
initially sharing pairs of qubits in pure states with two-
particle entanglement.

Proposition.—Let Alice and Bob share N � 2J pairs
of qubits each in the same state jf�. The associated
Hilbert space is H � HA ≠ HB 	 ��2�≠2J ≠ ��2�≠2J ,
J � 1, 2, . . . . Bob then loses the information DI about the
order of the qubits completely. As a consequence, Alice
and Bob are now sharing a less entangled mixed state s.
The distillable entanglement of the state s can be calcu-
lated exactly, and the ratio between the change of distill-
able DED and the amount of erased information DI obeys
for any J � 1, 2, . . . the inequality

DED

DI
# 1 , (12)

with equality for J � 1.
Proof: Let us first consider the case where jf� is a

maximally entangled state jf� � �j00� 1 j11���
p

2. To
prove the statement of the proposition we first construct the
state s after the loss of the order of Bob’s particles. Then
the optimal entanglement purification protocol will be
presented and its optimality proven. The loss in informa-
tion can be calculated and the validity of Eq. (12) for these
particular initial states is then confirmed. In the more gen-
eral case of arbitrary initial states jf� � aj00� 1 bj11�
the same approach can be applied, confirming Eq. (12).
Let H � HA ≠ HB be the underlying Hilbert
space and S �H � the associated state space. Since
HA and HB are 2J-fold tensor products of Hilbert
spaces isomorphic to �2, they can be decomposed
into a direct sum of orthogonal subspaces of the form
HA �

LJ
j�0

L
aj
H

A
j,aj

, HB �
LJ

k�0

L
bk

H
B

k,bk
,

where H
A

j,aj
� span
jj, m, aj� jm � 2j, 2j 1 1, . . . , j�

for j � 0, 1, . . . , J and aj � 1, 2, . . . , dj . The additional
degeneracy is given by dj �

2j11
2J11 � 2J11

J2j �. As in [13] we
choose jj, m, 1� � jj, m� ≠ ��j01� 2 j10���

p
2�≠�J2j�,

where jj, m� is the state of 2j qubits with a fixed value of j
and m with j 2 m qubits in j0�. HB can be decomposed
into a direct sum in exactly the same fashion.

Using such a decomposition of the Hilbert space, it can
easily be seen that the initial state of the N pairs shared
between Alice and Bob can be written as

≠N
n�1jf� �

X

j,m,a

jj, m, a� jj, m, a��
p

22J . (13)

The state s after the loss of the order of Bob’s
particles s is then given by s �

PJ
j�0

Pdj

aj ,bj�1 3

pjjcj�aj , bj�� �cj�aj , bj�j, with jcj�aj , bj�� �

1�
p

2j 1 1
Pj

m�2j jj, m, aj� jj, m, bj� and pj �
�2j 1 1���22Jdj�. This particular form of the state after
loss of the order of the particles can be proven using
Schur’s first lemma [14].

As before, the following distillation protocol is based on
the fact that the subspaces of the state space corresponding
to the above components of the underlying Hilbert space
are locally distinguishable. Interesting enough, this pro-
tocol is related to the algorithm proposed in [13] for the
optimal purification of qubits.

(i) Alice performs a local projective measurement in
such a way that her reduced state is an element of S �H A

j,aj
�

for some j � 0, . . . , J; aj � 1, . . . , dj .
(ii) If aj fi 1 she applies a local unitary operation UA

j,aj

such that her reduced state is included in the set S �H A
j,1�.

Since, in general, jj, m, aj� is a linear superposition of
Pijj, m, 1�, where Pi , i � 1, 2, . . . are appropriate locally
acting permutation operators, this is always possible.

(iii) The reduced state sA of Alice is at this stage
of the structure sA � vA ≠ ��j01� 2 j10�� ��01j 2

�10j��2�≠�J2j�. The last J-j pairs of qubits in the singlet
state are neither entangled with the other qubits on her
side nor entangled with any of Bob’s qubits. Hence, they
will be of no further use in the distillation protocol.

(iv) Bob performs a local measurement projecting his
reduced state on S �H B

k,bk
� with some k � 0, 1, . . . , J and

bk � 1, 2, . . . , dk . Because of the particular form of the
initial state k � j, but he may get a bj different from the
aj obtained by Alice.

(v) In the same way as before, Bob applies a local uni-
tary operation UB

j,bj
such that his reduced state is an ele-

ment of S �H B
j,1�.
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(vi) Alice and Bob end up with the probability d2
j pj � �2j 1 1�dj��22J � in one of the pure states jcj� �cjj, where

jcj� � 1�
p

2j 1 1
Pj

m�2j jj, m, 1� jj, m, 1�. This state contains log�2j 1 1� ebits of entanglement. Hence, the total
average number is

P
j d2

j pjS�trA�jcj� �cjj�� �
P

j d2
j pj log�2j 1 1�.

To show that the above protocol is actually optimal, we consider the relative entropy functional of the state s after
permutation with respect to an appropriate separable state r. The separable state r is taken to be r �

P
j pjrj , where

rj �
djX

aj ,bj�1

jX

m�2j

�jj, m, aj� �j, m, ajj ≠ jj, m, bj� �j, m, bjj�
2j 1 1

. (14)
Since all subspaces associated with different values of j,
m, aj , and bj are orthogonal and with pj �

2j11
dj22J this

expression is given by S�sjjr� �
PJ

j�0 d2
j pj log�2j 1 1�.

This is identical to the value given for the average number
of maximally entangled states obtained when employing
the above procedure, and, therefore, also identical to the
distillable entanglement ED�s� with respect to separable
operations. As we are again dealing with pure states as in
the example, the information that the ancilla holds about
the system is again DI � S�s� [see Eq. (8)]. It follows
that DED�DI # 1 for all N for this particular initial state.

For any pure state we can set jf� � aj00� 1 bj11�
with a [ �0, 1�, b �

p
1 2 a2 [12]. The same ar-

gument as before holds, and the same protocol is
optimal for the distillation with respect to separable
operations. The state s after permutation is found
to be s �

PJ
j�0 pjjcj�aj , bj�� �cj�aj , bj�j, where

now pj �
Pj

m�2j a2�J2m�b2�J1m��dj; the (unnormal-
ized) states jcj�aj , bj�� �cj�aj , bj�j are defined as

jcj�aj , bj�� �
Pj

m�2j aj2mbj1mjj, m, aj� jj, m, bj�.
Again, ED�s� �

PJ
j�0 d2

j pj S �trA jcj�1, 1�� �cj�1, 1�j�
and DI � S�s�. From this and the fact that, initially,
ED�jf� �fjN� � 2N�a2 loga2 1 b2 logb2� ebits of
entanglement are present, it follows that also in this case
DED�DI # 1 for all N . Finally, the same result holds for
the case where N � 2J 1 1 with J � 1, 2, . . ., which can
be solved in an analogous way.

Hence, in scenarios of the type discussed in the propo-
sition, concomitant with the loss of a number of bits of
classical information, not more than one ebit of distillable
entanglement is destroyed per bit of classical information.
These findings (see also [5]) lead us to the following.

Conjecture.—Let v be a state of a bipartite quantum
system taken from a set of (possibly entangled) states
v1, . . . , vN , each of which is assigned a classical probabil-
ity p1, . . . , pN . After the loss of the classical information
about the identity of the state v the state of the quantum
system is taken to be s �

PN
n�1 pnvn. The change in

distillable entanglement DED � ED�v� 2 ED�s� and the
loss of classical information DI then obeys the inequality
DED�DI # 1.

In summary, we have investigated a practically rele-
vant situation in which classical information about the or-
der of particles can be lost, e.g., during the transmission
via a quantum channel. Surprisingly, the general class
of mixed states obtained from this procedure have known
1614
distillable entanglement and therefore the corresponding
quantum channel has known quantum capacity [15]. It
turns out that the ratio between the loss of entanglement
and the amount of classical information lost in such a situ-
ation can be related by an inequality and we conjecture
the general validity of this inequality. These results shed
new light on the relationship between entanglement purifi-
cation and channel capacity on the one hand, and classical
information on the other.
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