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Phase Separation in Supersolids
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We study quantum phase transitions in the ground state of the two dimensional hard-core boson Hub-
bard Hamiltonian. Recent work on this and related models has suggested “supersolid” phases with
simultaneous diagonal and off-diagonal long range order. We show numerically that, contrary to the
generally held belief, the most commonly discussed “checkerboard” supersolid is thermodynamically
unstable. Furthermore, this supersolid cannot be stabilized by next-near-neighbor interaction. We obtain
the correct phase diagram using the Maxwell construction. We demonstrate that the “striped” supersolid
is thermodynamically stable and is separated from the superfluid phase by a continuous phase transition.
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Some 40 years ago, Penrose and Onsager [1] posed the
question: Is it possible for a bosonic system, like 4He,
to have a phase where long range crystal order (“solid”)
and off-diagonal long range order (superfluidity) coex-
ist? Their answer, based on an analysis which ignored
zero-point fluctuations, was that such supersolid phases do
not occur. Subsequently, it was argued [2–4] that including
the effect of large zero-point quantum fluctuations in the
crystal phase might allow for the existence of a supersolid.
This question has continued to spark much theoretical, nu-
merical, and experimental interest [5]. There has been a
convergence of agreement, based on mean-field [3,6–8]
and numerical [8–12] work, that supersolids do exist, in
2D lattice models, particularly in systems in which the den-
sity of bosons is doped away from the commensurate fill-
ings which are optimal for charge ordering. The existence
of supersolids for 2D quantum bosons has fundamental
implications to vortex phases in superconductors because
of formal mappings between the problems [13]. In this
paper, we demonstrate that the most discussed of these lat-
tice supersolid phases is thermodynamically unstable, and
we argue that it does not exist in any region of interaction
strength or density.

Consider a 2D square lattice with one hard-core boson
for every two sites (r �

1
2 ) interacting with near-neighbor

(nn) repulsion. If the interactions are weak, the bosons
will be mobile and condense into a superfluid phase at
low temperature. If the repulsion is strong, the system
will freeze into a charge density wave pattern in which
sites are alternately occupied and empty. At r �

1
2 these

possibilities are mutually exclusive. If we remove or add a
boson, the resulting bosonic defect could “hop” among the
background of charge ordered particles if the zero-point
fluctuations are large enough. A dilute gas of such defects
may Bose condense and form a superfluid superimposed
on the background of crystal order, a “supersolid” phase.
If, instead, next-near-neighbor (nnn) repulsion dominates,
the charge ordering is in stripes, but the basic issue of
a condensation of additional bosons coexisting with a
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striped pattern is as for checkerboard. While it is useful
to think of separate frozen and superfluid bosons, these
quantum particles are indistinguishable. All the bosons
simultaneously participate in both types of long range
order.

Calculations supporting this intuitive physical picture
are primarily based on mean-field theory with spin wave
stability analysis. They initially dealt with checkerboard
charge order where the ordering vector for the structure
factor is k � �p, p�. Liu and Fisher [6] argued that the
supersolid phase exists for hard-core bosons with nn repul-
sion, but that it is unstable in the sense that the critical ve-
locity vanishes. If nnn repulsion is present, the supersolid
can be stabilized [14]. Numerical and analytical studies
of the quantum phase model (QPM) [15], which describes
soft-core bosons, showed that the �p , p� supersolid phase
exists even without nnn repulsion, due to the soft cores.
The supersolid is present even at half filling, i.e., in the
absence of any defects [10]. Simulations of the hard-core
bosonic Hubbard model similarly found that the supersolid
phase exists in the absence of nnn repulsion off half filling,
but unlike the QPM is absent at half filling. In addition, a
mean field with spin wave analysis showed that this super-
solid phase has a finite critical velocity [8,11]. However,
it is generally accepted that at least in the presence of nnn
repulsion, the �p , p� supersolid phase is stable.

Discussions of stability based on nonvanishing critical
velocity examine the effects of low energy excitations on
an existing supersolid phase. To our knowledge, however,
there has been no discussion or numerical verification of
the underlying thermodynamic stability of either of these
supersolid phases against phase separation. Simulations
done at fixed particle number which found simultaneous di-
agonal and off-diagonal long range order, [8,10,11,16,17],
do not address the possibility of phase separation. In
what follows we examine thermodynamic stability of the
checkerboard and striped supersolids by constructing the
chemical potential particle number relation and calculat-
ing the compressibility.
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We use a new dual quantum Monte Carlo algorithm [18]
to simulate the hard-core bosonic Hubbard model,

H � 2 t
X
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X

��ik��
n̂i n̂k . (1)

ai (a
y
i ) are destruction (creation) operators of hard-core

bosons on site i of a 2D square lattice, and ni is the density
at site i. The hopping parameter is chosen to be t �
1 to fix the energy scale. V1 (V2) is the near-neighbor
(next-near-neighbor) interaction. At V2 � 0, and after an
appropriate sublattice spin rotation, this boson model is
equivalent to the spin- 1

2 antiferromagnetic XXZ model. In
this language, superfluid order corresponds to magnetic
order in the XY plane, while density order corresponds to
magnetic order in the Z direction.

To determine numerically the nature of the ground state
of (1), we evaluate, at fixed particle density, the equal time
structure factor at the ordering vector q,

S�q� �
1
N

X

l
eiq?l�n�j, t�n�j 1 l, t�� , (2)

and the superfluid density [11,19], rs � �W2��2b, where
W is winding number of the boson world lines. Ground
state results for S�q� and rs are shown in Fig. 1 (Fig. 2)
for the checkerboard (striped) phase. In both cases rs is
nonzero everywhere except precisely at half filling, but
S�q� also remains large off half filling, indicating solid
order. Using finite size scaling to extrapolate to the limit
of infinite lattice size for these fixed density systems
[8,10,11,16,17], one can show that density correlations are
indeed still long ranged off half filling where rs fi 0.
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FIG. 1. The structure factor S�p , p� and rs as a function of
fixed density. The half-filled point r � 0.5 is a solid with
rs � 0. For r close to r � 0.5, S�p, p� and rs are both
nonzero. Moving away from half filling, eventually S�p, p�
will no longer scale linearly with system size and the system is
a pure superfluid.
1600
The conclusion is that checkerboard and striped supersolid
phases exist in the thermodynamic limit.

Already, however, it was remarked [8] that the energy
versus density curves had small negative curvature in the
(p, p) supersolid phase. It was speculated that this was
evidence for phase separation. The �p , 0� supersolid phase
showed no such negative curvature. It was recently shown
numerically [17] that the easy-axis spin-1�2 XXZ model
on a square lattice exhibits a first order spin-flop transi-
tion. These results confirm the discontinuous nature of the
transition from the superfluid phase as r is adjusted in the
absence of nnn repulsion.

To address the possibility of phase separation systemat-
ically, i.e., to obtain the phase diagram in the interaction-
chemical potential (m) plane, we must obtain r as a
function of m and use the Maxwell construction [20]. We
first study the checkerboard case by fixing V2 � 0 and
scanning the filling for several values of V1. The chemical
potential for n bosons is calculated from the total energy:
m�n� � E�n 1 1� 2 E�n�. We work on lattices up to
size 12 3 12, and at temperatures as low as b � 6 to
access the ground state properties.

Figure 3 shows r versus m for V1 � 3, V2 � 0, as in
Fig. 1. The slope of this curve is the compressibility, k �
≠r�≠m. Two k , 0 branches are clearly seen just before
and after the energy gap. The gap itself corresponds to the
incompressible �p , p� solid at half filling which is seen in
Fig. 1. Using the Maxwell construction we find the critical
value of the chemical potential, mc (vertical dashed line),
and read off the critical filling rc in Fig. 3. The structure
factor (Fig. 1) begins a very rapid rise at the point where k

turns negative [21]. It is crucial to note that rs and S�p , p�
are both nonzero (Fig. 1) only in the unstable k , 0 region
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FIG. 2. The structure factor S�0, p� and rs as a function of
fixed density. The half-filled point r � 0.5 is a solid with rs �
0. For r close to r � 0.5, S�0, p� and rs are both nonzero.
As with the checkerboard case, finite size scaling for S�0, p�
determines the density at which solid order vanishes.
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FIG. 3. r versus m showing the k , 0 regions. The verti-
cal dashed line shows the location of the transitions from the
Maxwell construction. Inset: The phase diagram for V2 � 0.
The solid line shows the continuous transition to the Mott phase
at full filling; the dashed line shows the discontinuous transitions
from the superfluid to the checkerboard solid at half filling. The
density changes discontinuously across this line. The tip of the
lobe is a continuous critical point.

(Fig. 3). On one side of the transition the phase is purely
superfluid while on the other side it is a (p, p) solid. What
was previously accepted to be the checkerboard super-
solid at fixed density, lies entirely on the k , 0 branches
and therefore phase separates into a mixture of solid and
superfluid phases at densities r � rc and r �

1
2 . The

metastable states in Fig. 3 correspond to either the super-
fluid or the gapped insulating phases.

To check if nnn repulsion stabilizes this phase against
phase separation, we did simulations [21] with V1 � 3 and
V2 ranging from deep in the �p, p� solid region to close to
the boundary with striped order. We found the same k , 0
behavior as in Fig. 3. Next-near-neighbor repulsion does
not stabilize the checkerboard supersolid phase.

Repeating the simulations that gave Fig. 3 for different
values of V1 we construct the phase diagram in the
(m�V1, t�V1, V2 � 0) plane, shown as the inset in Fig. 3.
As the tip of the lobe is approached, the energy gap
opens without k , 0 regions in the r, m plane. Therefore
this point is apparently a continuous transition. This is
consistent with Ref. [22] while Ref. [23] finds a first
order transition in a model with longer range (Coulomb)
interactions.

The same analysis for V1 � 0, scanning V2 and r, de-
termines the stability of the striped supersolid. Figure 4
is a typical plot of r versus m traversing the incompress-
ible (gapped) striped solid at r �

1
2 . This is strikingly

different from Fig. 3. There is no k , 0 region: The
phase transitions are all continuous. Furthermore, as m is
increased from the lowest shown value, the slope, i.e., k,
changes markedly at �m � 0.74, r � 0.25�. We find that
S�0, p� (Fig. 2) begins a rapid increase, indicating long
range striped order, at precisely this particle density, r.
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FIG. 4. r versus m. Inset: The phase diagram for V1 � 0.
The narrow regions sandwiched between superfluid and �p, 0�
solid phases are the stable supersolid phases.

Since the superfluid density, rs, is still finite, we con-
clude that the rapid crossover in k, like the behavior of
the structure factor, signals the continuous transition from
the superfluid to the (0, p) supersolid. Increasing m fur-
ther takes the system into the gapped (0, p) insulator, then
back to the striped supersolid, and finally to the superfluid
phase at m � 19.2. At strong coupling, the gap (the jump
in m) across the incompressible striped phase is 4V2 � 20
for the 2D square lattice. This value is reduced by quan-
tum fluctuations as V2 decreases, eventually disappearing
entirely at weak coupling. The absence of negative com-
pressibility regions indicates that all phases, in particular,
the striped supersolid, are thermodynamically stable.

Repeating these simulations for various values of V2
gives us the phase diagram in the (m�V2, t�V2, V1 � 0)
plane (inset in Fig. 4). The regions sandwiched between
the superfluid and the striped solid are the two stable
striped supersolid phases. As the tip is approached,
the supersolid phase gets narrower since the super-
solid-�0, p�-solid transition approaches the supersolid-
superfluid (SS-SF) transition. This prevents us from
resolving these transition points near the tip. The diffi-
culty in the numerical determination of these points stems
from the fact that when the SF-SS and SS–striped solid
transitions get very close to each other, they start behaving
numerically as multicritical points. However, it appears
that the supersolid phase completely surrounds the striped
solid phase except at the tip and the base where we have
multicritical points.

We also studied the effect of nn repulsion on the (0, p)
phase and found that the �0, p� supersolid remains stable
and that additional gapped phases appear at other special
fillings [10,24]. Whether there are associated supersolid
phases is under investigation [24].

The fact that it is easier to support nonzero rs in a
striped solid than a checkerboard one can be qualitatively
argued as follows: In a striped solid doped away from
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half filling, defects have channels in which they can move
at no interaction energy cost, and, importantly, the ki-
netic energy of these defects is set by t and can be con-
trolled independently of the strength of the interaction V2
which determines the solid order. In a checkerboard solid,
the motion of a defect proceeds through an intermediate
state of energy 2V1, giving a reduced effective hopping
teff � t2�2V1. V1 controls simultaneously the defect ki-
netic energy and the tendency to charge order. As a con-
sequence, there is reduced ability to tune to a supersolid
phase. It is still remarkable, though, that the striped phase
forms even at very low densities. Indeed, in the fermion
Hubbard model, very small doping (just a few percent)
away from half filling destroys long range spin order (an-
tiferromagnetism), leaving little possibility that it might
coexist with superconductivity.

In this paper, we have presented quantum Monte Carlo
results for ground state correlations in the hard-core
bosonic Hubbard model with near- and next-near-
neighbor repulsion. We show that the q � �p, p�
checkerboard supersolid, contrary to current beliefs, is
an unstable phase and does not exist thermodynamically
for this model for any filling or nnn repulsion. Instead,
the system phase separates into solid and superfluid
phases. This contradicts mean-field predictions which
examine stability via an evaluation of the critical velocity
for spin waves, and we find that in the presence of
next-near-neighbor repulsion the supersolid is stable. We
have not examined the soft-core case in detail, but prelimi-
nary results indicate negative compressibility regions in
that case, too [8]. The quantum phase model for soft-core
bosons also exhibits negative compressibility phases [25].

We found the striped supersolid phase q � �p , 0� to
be stable and separated from the superfluid phase by a
continuous transition. The energy E�n� provides a sig-
nal of the transition: The compressibility exhibits a rapid
crossover from the superfluid to the supersolid phase, with
kSF , kSS. The issue of the stability of possible super-
solid phases at other densities and wave vectors which are
associated with the presence of long range interactions is
a fascinating one which is presently under investigation.

We acknowledge useful discussions with G. Zimanyi,
H. Rieger, and M. Loaf.
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