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Undercompensated Kondo Impurity with Quantum Critical Point
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The low-temperature properties of a magnetic impurity of spin S interacting with an electron gas via
anisotropic spin exchange are studied via Bethe’s ansatz. For S . 1�2 the impurity is only partially
compensated at T � 0, leaving an effective spin that is neither integer nor half integer. The entropy has
an essential singularity at H � T � 0, and the susceptibility and the specific heat follow power laws
of H and T with nonuniversal exponents, which are the consequence of a quantum critical point. The
results for the generalization to an arbitrary number of channels are also reported.

PACS numbers: 72.15.Qm, 71.27.+a, 75.20.Hr, 75.30.Mb
The deviations from the usual Fermi-liquid behavior ob-
served in the specific heat, susceptibility, and resistivity
of several heavy fermion compounds [1] are frequently at-
tributed to the existence of a quantum critical point (QCP).
One possible realization of such a QCP is the screening of
each f electron site via the quadrupolar Kondo effect [2],
which is a special case of an overcompensated multichan-
nel Kondo impurity. In this Letter we show that a QCP can
also be induced in an undercompensated Kondo impurity
with anisotropic coupling to the conduction electrons.

In the multichannel Kondo problem [3] three qualita-
tively different situations have to be distinguished as a
function of the number of channels n and the impurity spin
S [4–7]: (i) If n � 2S the channels are exactly sufficient
to compensate the impurity spin into a singlet, giving rise
to Fermi-liquid behavior at low T . This case is realized for
Fe and Cr impurities in Cu and Ag [4,8]. (ii) If n , 2S
the impurity spin is only partially screened (undercompen-
sated), since there are not enough channels to yield a sin-
glet ground state, leaving an effective spin degeneracy of
�2S 1 1 2 n�. As a function of T the remaining spin de-
generacy gives rise to a Schottky anomaly at about T � H
and the zero-field susceptibility diverges following a Curie
law. Impurities with two magnetic configurations such as
Tm or Tb could be related to this situation [4,9]. (iii) If
n . 2S the number of channels is larger than required to
compensate the impurity spin. Critical behavior with uni-
versal exponents dependent only on n is obtained as T and
H tend to zero. The overcompensated non-Fermi-liquid
fixed point is understood in terms of an essential singular-
ity in the entropy of the impurity at H � T � 0, which
corresponds to a fractional spin if H � 0 and to a singlet
if H fi 0 [4–7]. Possible applications for this case are the
quadrupolar Kondo effect and electron-assisted tunneling
of an atom in a double-well potential [2,10].

The undercompensated fixed point has received much
less attention than the overcompensated one. In this Let-
ter we show that exchange anisotropy drives the low-T
fixed point from an asymptotically free spin to a QCP with
nonuniversal exponents. Such a situation could arise in ax-
ial symmetry, where crystalline fields induce anisotropies.
A possible experimental realization is an impurity (e.g.,
0031-9007�00�84(7)�1559(4)$15.00
Tm or Tb) at the surface of a metallic film. As an example
consider a mixed valent impurity with two magnetic con-
figurations of spin 1�2 and 1, respectively. We denote the
states according to their spin and z component, i.e., jSSz�.
We assume that the configuration of spin 1 has one more
electron and an energy e relative to the Fermi level. The
hybridization Hamiltonian is [9,11]
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X
s

∑
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y
sj

1
2s� �1�2s�j
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p
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∏
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For V1 � V2 the model is isotropic in spin space. For
e ø 0 the configuration of spin 1�2 can be eliminated via
a Schrieffer-Wolff transformation, yielding an anisotropic
exchange interaction of the form (S � 1)

Hex � JkS
zsz 1

1
2J��S1s2 1 S2s1� 1 D�Sz�2Is ,

where Is , sz , and s6 are the identity and the Pauli ma-
trices (of eigenvalues 6

1
2 ) for the conduction states. Here

Jk � V 2
1 �jej, J� � V1V2�jej, D � �V 2

1 2 V 2
2 ��2jej, and

we neglected a normal scattering term. Kondo impurities
with anisotropic exchange coupling have long been stud-
ied for the spin-compensated [12,13] and overcompensated
[14] cases, but not for the undercompensated situation.

Additional crystalline field effects change the relative
strengths of Jk, J�, and D. Hex (for S � 1) is integrable
(for a linear dispersion for the conduction states of density
r) as a function of two real dimensionless parameters, m

and f, that determine Jk, J�, and D. For small anisotropy
we obtain that Jkr � 22m�f, J� � Jk�1 2 d�3�, and
D � 2

1
3Jkd with d �

1
2f

2 1
1
8m2. Note that the U(1)

invariance restricts the model to two independent coupling
parameters. The isotropic limit [15] is recovered for
f ! 0 and m ! 0 with m�f � 2J�2.

In this Letter we obtain the solution of a model with U(1)
symmetry in which an impurity of spin S interacts with
conduction electrons in one orbital channel (with linearized
dispersion). The multichannel results are presented at the
end of the Letter. For S �

1
2 the D term in Hex is irrele-

vant and the model reduces to the anisotropic Kondo model
© 2000 The American Physical Society 1559
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(Jk . J�) solved by Wiegmann [13]. For S �
1
2 the im-

purity is exactly compensated and the ground state is a
singlet. For S � 1 the model reduces to Hex. For S . 1
there are additional U(1) invariants.

For N electrons in a box of length L with periodic
boundary conditions the solution of Hex is equivalent to
the simultaneous diagonalization of N transfer matrices

T̂j � P̂j,j11P̂j,j12 · · · P̂j,NR̂j,SP̂j,1 · · · P̂j,j21 , (1)

j � 1, . . . ,N , with eigenvalues exp�ikjL�, where kj are
the wave numbers of the electrons. Here P̂j,j0 permutes the
electrons j and j0, and R̂j,S � exp�2iHex� is the scattering
matrix of the electron j off the impurity.

The model and its solution are constructed from the scat-
tering matrices via the quantum inverse scattering method.
The Yang-Baxter triangular relation (sufficient condition
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for the integrability) has the following U(1)-invariant so-
lution [16]:

R�u� � �sinh�u 1
1
2g 1 gSzsz�

1 sinh�g� �Sxsx 1 Sysy�	�sinh�u 1 g�S 1
1
2 �	 ,

where the Pauli matrices refer to an electron and the spin
operators Sx , Sy , and Sz correspond to the impurity of spin
S or to another conduction electron (S � 1�2). Here u is
the spectral parameter and g is the anisotropy parameter
(to be identified with im). For u ! 0 and g ! 0 with
u�g � l kept finite it reduces to the R matrix for isotropic
exchange [impurity of spin S and SU(2) invariance]. For
u � f the R matrix corresponds to the scattering matrix
of an electron off the impurity of spin S. For u � 0 and
S � 1�2, on the other hand, the R matrix reduces to the
spin permutation operator. Hence, all limits are properly
contained.

We introduce a standard monodromy matrix [11,13,17]
L

s0

1···s0
NS

0�

s1···sNS� �u; u1, . . . , uN11� � R

t0m1

s
0
1s1

�u 2 u1�Rm1m2

s0s2
�u 2 u2� · · ·R

mN21mN

s0sN
�u 2 uN �RmNt

S0S �u 2 uN11� , (2)
with the implicit sum over all mj indices. The first N
factors refer to conduction electrons and the last one corre-
sponds to the impurity. With respect to the indices t and t0

the monodromy matrix forms a 2 3 2 matrix, whose trace
is the transfer matrix T̂ . For u � 0 and uj � 2fdj,N11
the transfer matrix is identical to (1). As a consequence of
the triangular Yang-Baxter relation transfer matrices for
different values of the spectral parameter commute and
hence there exists a basis of states that diagonalizes the
transfer matrices for all u simultaneously. The derivatives
of the logarithm of the transfer matrix with respect to u

yield the conserved quantities of the model, e.g., the Ham-
iltonian as H � d lnT �u��duju�0.

The simultaneous diagonalization of the transfer matri-
ces leads to the Bethe ansatz equations (BAE). Following
a standard procedure [4–6,11,13] we obtain

eikjL � e2iwS"

YM

b�1 g�ub , m�2� ,

g�ua 1 f, mS� �g�ua , m�2�	N

� 2
YM

b�1 g�ua 2 ub , m� , (3)

where g�x, y� � sinh�x 1 iy�� sinh�x 2 iy�, wS" is the
phase shift due to the scattering of an up-spin electron with
the spin-polarized impurity, M is the number of flipped
spins (M # N�2), j � 1, . . . ,N and a � 1, . . . ,M. The
ua are the spin rapidities (related to the wave numbers of
the spin excitations). The first factor on the left-hand side
of the second equation arises from the impurity. The re-
maining factors are identical to those of the [U(1)-symmet-
ric] Heisenberg chain with planar anisotropy [18]. In the
limit f ! 0 and m ! 0, keeping ua�m and f�m ~ 1�J
fixed, we recover the isotropic case. The energy and the
magnetization are E �

PN
j�1 kj and Sz �

1
2N 1 S 2 M.

In the thermodynamic limit the solutions of (3) are
complex and form strings [19] of length �n 2 1�, n �
1, . . . , `, un,l

a � Ln
a 1 im�n 1 1 2 2l��2, l � 1, . . . , n,

where Ln
a is real and represents the motion of the center

of mass of the string. In contrast to the SU(2)-symmetric
model [11,13,15,17] the BAE for the U(1)-invariant chain
are twofold periodic in m, so that a parity (even or odd)
has to be associated with the order of the string state [19].
Limiting ourselves to low T (so that long strings do not
contribute significantly) and to 2Sm , p�2, we have to
consider only string states of even parity. This is satisfied
if either the anisotropy or the impurity spin is not very
large. We can restrict ourselves to string states so that
nm , p�2, which substantially simplifies the thermody-
namic BAE. The neglected strings with n . nmax neither
affect the ground state nor the low-T properties. If jn is the
number of strings of length n 2 1, then M �

Pnmax
n�1 njn

must be satisfied.
The rapidities satisfy Fermi statistics and their occupa-

tion is described in terms of dressed energies, en�L�, which
enter the Fermi distribution. In thermal equilibrium they
satisfy the integral equations [11,13,17,19]
ln�1 1 exp�en�T �	 � nH 2
N
2L
fn�L� 1 T

nmaxX
k�1

Z dL0

2p
3 ln
1 1 exp�2ek�L0��T 	�An,k�L 2 L0� , (4)

An,k�L� � fn1k�L� 1 2
mn,kX
l�1

fn1k22l�L� 1 fjn2kj�L� , fn�L� � 2 sin�nm���cosh�2L� 2 cos�nm�	 , (5)
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and mn,k � min�k, n� 2 1. Equation (4) is the thermo-
dynamic BAE, in this case restricted to n , nmax. As
T ! 0 only e1 can be negative; hence, only real rapidities
are occupied in the ground state, while all string states are
empty. In the limit m ! 0 these equations reduce to the
thermodynamic BAE for isotropic Kondo coupling [15].
The impurity contributes only to order 1�N and does not
drive the population of the bands.

The free energy of the impurity is given by

Fimp�H,T � � F0
imp 2 T

Z
dLG0�L 1 f �

3 ln
1 1 exp�e2S�L��T 	� , (6)

where G0�L� � �2m cosh�pL�m�	21. F0
imp is the zero-

field ground state energy, which is a nonuniversal constant.
The validity of Eqs. (4) and (6) is restricted to low T

(due to the truncation at nmax), where they yield the correct
ground state and leading low-T properties. For special
values of the anisotropy m � p�n with n � 3, 4, 5, . . . ,
Takahashi and Suzuki [19] have shown that the recurrence
relation for the exact thermodynamic BAE truncates and
reduces to n 2 1 integral equations. Here we consider the
general case for which m�p is an irrational number.

The ground state equations are obtained from (4) as
T ! 0. Only the e1 band is populated, while all bands
of stringed rapidities are empty. In zero field the band is
completely filled and via Fourier transformation we ob-
tain e1�L� � 2�pN�L�G0�L�. With increasing field the
large jLj tails become depopulated. To leading order in
the field (the bandwidth is assumed very large) the ground
state integral equation is of the Wiener-Hopf type with the
integration limit B�H� determining the Fermi point. Its so-
lution yields B � �p�m� ln�H�A�, where A is a constant.
Here B ! 2` corresponds to zero field.

The impurity changes the distribution of rapidities. The
impurity density satisfies the Wiener-Hopf equation

r
imp
h �L� 1 rimp�L� 1

Z `

B

dL0

2p
f2�L 2 L0�rimp�L0�

� �1�2p�f2S�L 1 f� , (7)

where r
imp
h �L� is the distribution of the rapidity holes. In

zero field there are no holes and the solution is

r̂imp�v� �
sinh��p 2 m2S�v�2	e2ivf

2 cosh�vm�2� sinh��p 2 m�v�2	
, (8)

where the hat denotes Fourier transform. In zero field
the impurity has a residual magnetization if S .

1
2 (un-

dercompensated impurity), S
imp
z � a�S 2

1
2 �, where a �

1��1 2 m�p�. For m ! 0 this reduces to the result for
isotropic coupling. For anisotropic coupling we have that
the remnant spin is neither integer nor half integer, but a
fractional quantity. This feature is indicative of critical be-
havior even in the undercompensated limit.

The field dependence of the impurity magnetization is
obtained from the solution of the Wiener-Hopf equation
(7) [4,6,11,13]. We limit ourselves to state the results in
small and large fields. In the low field limit we have to
distinguish the cases S � 1�2 and S . 1�2. For S � 1�2
the ground state is a singlet, the susceptibility is finite, and
all terms of the H�TK expansion are analytic [15]. Here
TK ~ exp�2jfjp�m�. This Fermi liquid fixed point is in
agreement with Anderson’s renormalization group result
[12]. For S . 1�2, on the other hand,

Simp
z � a�S 2

1
2 � 1 C�H�TK �2am�p 1 . . . , (9)

where C is a constant and the dots stand for higher order
analytic and nonanalytic terms in H. This proves the con-
jecture that a QCP is associated with the fractional remnant
spin. In high field the saturation magnetization is S and as
the field decreases S

imp
z is reduced by a power of TK�H,

Simp
z � S 2 C0�TK�H�2m�p 1 . . . , (10)

which replaces the logarithms of asymptotic freedom of
the isotropic case. This result holds for all impurity spins.
The impurity magnetization can also be obtained from the
impurity free energy, Eq. (6), in the limit T ! 0.

Consider now (4) for low T , i.e., T ø 1, and introduce
a shift in the rapidities, L � l 1 �m�p� ln�TmL�2pN	.
Defining hn�l� � exp�en�L��T 	, Eq. (4) is written as

lnhn � G0 � ln��1 1 hn21� �1 1 hn11�	 2 dn,1e
pl�m,

(h0 � 0) so that T has formally disappeared as a param-
eter. Here � denotes convolution. As l ! 2` it reduces
to an algebraic equation and has the solution

1 1 hn � 
sinh��n 1 k 2 1�H�2T 	� sinh�kH�2T ��2,

where k is an arbitrary constant that tends to 1 as m ! 0.
The constant k cannot be determined from this set of
equations because of its truncation for large n (nmax, odd
parity strings have been neglected). The impurity free en-
ergy, Eq. (6), now has the form

Fimp � F0
imp 2 T

Z
dl ln�1 1 h2S�l�	

3 G0�l 1 �m�p� ln�TmL�2pN� 1 f 	 . (11)

The function G0 only contributes significantly around its
maximum, i.e., l � �m�p� ln�TK�T �, and inserting h2S
we obtain a residual entropy of

Simp�T � H � 0� � ln�1 1 �2S 2 1��k	 . (12)

Comparing to Eq. (9) we have that k � 1�a � 1 2 m�p .
If H fi 0 the entropy vanishes at T � 0 for all spins.

Hence, for S � 1�2 the ground state is a singlet (Fermi
liquid) and the entropy is a continuous function ofH and T .
If S . 1�2 a small H lifts the degeneracy and the entropy
vanishes. Since the spin is fractional and the entropy has
an essential singularity at T � H � 0, quantum critical
properties arise, induced by the anisotropy. They are not
existent in the SU(2)-invariant model.

To obtain the leading low-T dependence of the specific
heat in zero field we distinguish S �

1
2 from S .

1
2 . For

S �
1
2 the Sommerfeld expansion of the Fermi functions
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yields the usual Fermi-liquid behavior. For S .
1
2 , on the

other hand, we consider

dFimp�T � � 2 T
Z dv

2p
exp�i�vm�p� ln�T�TK �	

3
sinh�v�p 2 2Sm��2	

sinh�vp�2�

3 ln
1 1 exp�2je1�l�j�T 	� ,

where e1 is the T � 0 solution. The leading term arises
from the zero of sinh�vp�2� at v � 22i, yielding
Cimp ~ �T�TK �2m�p . The critical exponent depends on
the anisotropy, but not on S, and it is different from the
exponent of the magnetization. The QCP disappears as
m ! 0. From the scaling dimensions of the field and
temperature we have Tximp ~ �T�TK �2m�p .

Finally, we summarize our results for the anisotropic
n-channel Kondo problem. As in the isotropic case the
conduction electron spins of the n channels glue together
to form a composite of spin n�2. The BAE for the U(1)-in-
variant model are similar to (3), but with sinh�u 6 inm�2�
replacing sinh�u 6 im�2� in the first equation and in the
driving factors in the second. The general structure of the
integral equations is then the same as for n � 1, except
for the driving terms. We limit ourselves to the low-T
and small field properties of (i) compensated (n � 2S),
(ii) undercompensated (n , 2S), and (iii) overcompen-
sated (n . 2S) impurity spins.

A completely compensated impurity has Fermi-liquid
properties, i.e., the ground state is a singlet, the suscepti-
bility is finite, and the specific heat is proportional to T .
The anisotropy does not affect the low-T fixed point.

In the undercompensated case the impurity spin is par-
tially compensated leaving a fractional remnant spin of
a0�S 2

n
2 �, where a0 � 1��1 2 nm�p�. The entropy

has an essential singularity at H � T � 0 jumping from
ln�1 1 a0�2S 2 n�	 to zero when H fi 0. The specific
heat and ximp follow power laws as H ! 0 and T ! 0

Szimp 2 a0�S 2 n�2� ~ �H�TK �2a0m�p ,

Cimp ~ Tximp ~ �T�TK �2m�p .
(13)

The fractional character of the remnant spin is induced
by the anisotropy and drives a QCP, which is the main
new feature of this model. The exponents depend on the
anisotropy parameter m and the critical behavior disap-
pears in the isotropic exchange limit.

The low-T properties of an overcompensated impurity
are governed by a QCP with singular ground state entropy,
which is ln
sin�p�2S 1 1���n 1 2�	� sin�p��n 1 2�	� in
zero field and zero if H fi 0. The magnetization and spe-
cific heat follow power laws as H ! 0 and T ! 0

Szimp ~ �H�TK �2�n, Cimp ~ Tximp ~ �T�TK �4��n12�.
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The critical exponents depend on the number of channels,
but not on the anisotropy. For n � 2 the dependence on
H and T is logarithmic. This non-Fermi-liquid behavior is
identical to that for isotropic exchange.

In summary, the exchange anisotropy does not affect
the compensated and overcompensated fixed points, but
it is a relevant variable for the undercompensated Kondo
impurity. For n fi 2S the system has a QCP, with universal
exponents for n , 2S, but nonuniversal ones (they depend
on the anisotropy) for n . 2S.
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