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Using a classical theory for ionized impurity scattering, it is demonstrated that in the degenerate regime
the conductivity scales as

p
eF where the Fermi energy is measured with respect to the mobility edge.

The approach, a special case of alloy theory, explains the conductivity scaling exponent s �
1
2 observed

for weakly compensated, doped crystalline Si and Ge. The results explain the breadth of scaling range
and suggest how to obtain a consistent picture of the scaling of the mobility, diffusion coefficient, and
Hall coefficient.

PACS numbers: 71.30.+h, 72.10.–d, 72.80.Cw
One of the important unresolved issues concerning the
metal-insulator transition (MIT) in weakly compensated
doped Si and Ge is an explanation for the scaling expo-
nent s of the conductivity s�n, T ! 0� � s0�n�nc 2 1�s

where s has been found to be close to 0.50 for Si:P
[1], Si:As [2], Si:Sb [3], Si:B [4], Ge:Sb [5], Ge:As [6],
and Ge:Ga [7]. Of particular note are the Si:P uniaxial
stress and neutron-transformation doped (NTD) 70Ge:Ga
results that approached nc more closely than other studies,
namely 1.0001nc for Si:P and 1.0004 for Ge:Ga. These
two studies were also carried to lower T [3 mK for Si:P,
20 mK for Ge:Ga] than the other studies. The other
systems, with minor corrections to nc, also show s � 0.50
and support the notion of a universal [8] exponent
s �

1
2 . In contrast, the amorphous semiconductor-metal

alloy systems all show s � 1.0, which is in agreement
with the Wegner [9] prediction s�0� ~ �EF 2 Ec��d22�n

�d � 3, n � 1� and the Abrahams et al. [10] scaling pre-
diction from the b�g� function approach. There have now
been at least six different proposals [11–16] to explain
the s � 0.5 result, but none of them have been widely
accepted. While it has been clear that both disorder and
electron-electron �e-e� interactions are important features
of the MIT in these systems it hasn’t been possible to
proceed beyond perturbation results that are first order in
the disorder. Although the experimental results give strong
evidence for the Altshuler-Aronov [17] diffusive correc-
tion dsD�n, T � � m�n�

p
T at finite T the role of e-e

interactions at T � 0 is less obvious. The dominant low
temperature scattering mechanism for doped semiconduc-
tors and dilute alloy systems, ionized impurity scattering
(IIS), has not yet played a central role in interpreting MIT
transport results. The field of IIS, with its complications
and complexities, has been comprehensively reviewed by
Chattopadhyay and Queisser [18]. In this paper IIS, a
classical theory [19–21] well known for five decades in
semiconductor physics, is shown to yield s �

1
2 . This

robust result is independent of the form of the density
of states (DOS) above the mobility edge at Ec and
depends only on the system being sufficiently degenerate
��EF 2 Ec��kT ¿ 1�. The approach assumes the random
0031-9007�00�84(7)�1539(4)$15.00
potential and Anderson localization [22], which produce
the mobility edge at Ec, and incorporates the two-
component model with a density nl of localized electrons
below Ec and a density na of itinerant electrons above Ec

such that na 1 nl � n � Nd 2 Na. Simple theoretical
notions and the Hall coefficient results argue that na ! 0
as n ! nc1.

A general expression for s�n, T � given by Mansfield
[23], valid for arbitrary degeneracy which can be utilized
for scattering from a random distribution of ionized impu-
rities, is

s�T � � �2e2�3m� kT �
Z `

Ec

tN�E� �E 2 Ec�f�1 2 f� dE,

(1)

where his DOS N�E� � 4p�2m��3�2�E 2 Ec�1�2�h3 was
intended for the host semiconductor conduction band
�Ec � ECB�. Here Ec refers to the mobility edge of the
impurity band, which is well below ECB in most of the
many-valley semiconductors. f is the Fermi function.
It is straightforward to show for EF 2 Ec�kT ¿ 1
Eq. (1) leads to the standard Boltzmann result sB �
ne2t�EF��m� where n �

R`

Ec
N�E�f dE. For the present

case an arbitrary DOS N�E� � C��E 2 Ec��E0�p will
be employed, although the same basic result is found
if one adds N�Ec� to N�E�. For IIS the collision rate
1�t � Niy�s�, where Ni is the density of ionized im-
purities, y � h̄k�m�, and the angle averaged cross
section �s� � �4p�k2�

P
l�l 1 1� sin2�dl 2 dl11�. The

phase shifts dl are restricted by the Friedel [24] sum
rule Zp�2 �

P
l�2l 1 1�dl. The number of itinerant

electrons above Ec is given by na �
R`

Ec
N�E�f dE �

CE0�kT�E0�p11Fp�h�� where the Fermi integral
Fp�h�� �

R`
0 hpf dh with h � �E 2 Ec��kT and h� �

�EF 2 Ec��kT . Substituting these into Eq. (1) yields

sIIS�T , h�, p� � �e2�3h� �2m�kT�h̄2�1�2�na�NiFp�h���

3
Z `

0

hp13�2f�1 2 f� dhP
l�l 1 1� sin2�dl 2 dl11�

,

(2)
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where the scattering integral in Eq. (2) would need to be
evaluated numerically when the phase shifts dl�E� are
known. For insulating hosts with no compensation at
very low T [kT , 1024EG , with EG the host band gap]
na � Ni , while for small compensation K �K ø 1� Ni �
na 1 2KND for the n-type cases. The dependence of
na on EF 2 Ec will be considered below. In the highly
degenerate case f�1 2 f� is sharply peaked about EF

and the phase shifts are the values at EF and change
slowly with EF�n� for h� ¿ 1. This allows li,h�EF�n�� �P

l�l 1 1� sin2�dl 2 dl11� to be removed from the inte-
gral. Integrating by parts

R
hp13�2f�1 2 f� dh � � p 1

3�2�Fp11�2�h�� and sIIS becomes

sIIS�T , h�, p� � � p 1 3�2� �e2�3hli,h�n��

3 �2m�kT�h̄2�1�2�Fp11�2�h���Fp�h��� .

(3)

Evaluating the Fermi integrals for h� ¿ 1 the leading
terms yield for the ratio �� p 1 1��� p 1 3�2��h�1�2 pro-
ducing the final result

sIIS�h� ¿ 1, p� � � p 1 1� �e2�3hli,h�n��

3 �2m��EF 2 Ec��h̄2�1�2. (4)

There is a close analogy between standard alloy theory
[24,25] and Eqs. (2) and (4). In dilute alloys the residual
resistivity ri � m��ne2ti�EF� where 1�ti � Niy�si�
and using the standard expression for �si� one finds
ri � �2h�e2� �Ni�n� �li,h�kF�. The total conductivity for
the MIT case is s � r

21
h 1 r

21
i where rh�T ! 0� ! `

[note that the s contributions are additive, whereas for
the alloy r � rh 1 ri]. For the dilute alloy Ni ø n
and kF is determined by the free carrier density n and
is virtually constant. For the MIT case with weak com-
pensation n � na � Ni and kF ~ �EF 2 Ec�1�2 and
kF ! 0 as n ! nc1. The remarkable result for the MIT
case for strong enough degeneracy is that si � r

21
i

is independent of the density of itinerant electrons na

above Ec and depends only on the energy dependence of
ti�EF� ~ �EF 2 Ec�1�2 and li,h�n�.

Equation (4) can be written as sIIS ~ �e2�hli,h�kF

where kF � �2m��EF 2 Ec��h̄2�1�2. It should be stressed
that the use of the expression t � m�k�2hNili,h is
crucial in obtaining sIIS ~ �e2�h�kF . One cannot obtain
this result using either the Conwell-Weisskopf tCW or
the Brooks-Herring tBH. This form differs from Mott’s
[26] minimum metallic conductivity sM ~ �e2�h�k2

Fl
because it lacks the extra kFl factor and because kF

depends only on the itinerant electrons above Ec while
Mott’s kF depended on the total doping density Nd .
Significantly, the result in (4) is independent of the
correlation length �j�E��j0 � ��E 2 Ec��E0�2n� expo-
nent n. If j�E� is inserted into (4), one finds sIIS ~

�2m�E0�h̄2�1�2�j0�j�1�2n . For n � 1 sIIS ~ j21�2,
similar to a result obtained by Kaveh and Mott [14].
Their result was obtained with localization and interac-
1540
tion corrections and depended on the relative magni-
tude of the Hartree and exchange contributions. The
present result coming from incoherent IIS can be
written as sIIS � e2�h̄ldB, where ldB � h�pF �
h��2m��EF 2 Ec��1�2 is the de Broglie wavelength. In the
critical regime n�nc 2 1 ø 1 ldB , j�n�, the dominant
scattering is incoherent, which is why sIIS is independent
of n. Electron-electron interactions through screening
can affect the phase shifts, but the phase shifts only
enter the prefactor s0 for h� ¿ 1. Using �EF 2 Ec��
E0 � �n�nc 2 1�b one obtains sIIS ~ �n�nc 2 1�b�2,
which yields the result s �

1
2 for b � 1, which is the

accepted value of b. Since EF 2 Ec � E0 at n � 2nc

the quantity �2m�E0�h̄2�1�2 � kF�2nc� � �3p22nc�y�1�3

where y is the number of valleys in the n-type many-
valley semiconductor. For p-type cases y is the orbital
degeneracy of the G8 states at the top of the valence band
neglecting the spin-orbit split off G7 states. For n-type
cases the large valley orbit splittings remove the degener-
acy of the donor levels. The impurity bands for Si consist
of 1s-A1, 1s-T2, and 1s-E bands which strongly overlap
for n . nc. Assuming all of these band states exist
below ECB then y remains unchanged. The conductivity
prefactor s0�nc, p, li,h� is now determined if the phase
shifts and li,h are known. Conversely, the experimental
s0 can be used to determine values of li,h for a given p
since the nc are known. For screened Coulomb potentials
the phase shifts can be calculated subject to the Friedel
sum rule and calculated values of li,h can be compared
with the experimental values.

Table I gives the experimental values of nc and s0 and
calculated values of �e2�3h�kF�2nc�. The li,h 	li,h �
�e2�3h� �kF�2nc��s0�
 given are for the y values in
Table I. If one used p �

1
2 corresponding to sB �

nae2t�EF��m� the li,h’s would increase by 50%. The
quantity l � 1 for a single phase shift d0 � p�2. For
two phase shifts d0, d1 � d0�m, l � 0.39 for m � 3
and 0.78 for m � 9. For three phase shifts d2 � d1�q
the l are reduced further as shown in Table I. Seeger
[27] has reported phase shifts for a screened Coulomb
potential �Z � 1� corresponding to m � 4.6, q � 5.7,
and l � 0.41. The experimental values of li,h fall into
two groups, one clustering around 0.17 for Si:P, Si:As,
and Ge:Sb, and a second with 0.36 , li,h , 0.57. One
expects a difference for n- and p-type cases because of
the different character �s, p, . . .� of the wave functions
near the conduction band and valence band edges. The
donor differences for the same host between Si:Sb, Si:P,
and Si:As and between Ge:As and Ge:Sb (the values
of s0 are less accurate for Si:Sb and Ge:As) probably
reflect the effect of the strong short range central cell
potential (unscreened by carriers) on the phase shifts and
li,h. The central cell potential leads to donor binding
energy differences (dilute limit) ED 2 Eeff.mass that are
understood. The li,h do not show impurity variations
simply related to ED 2 Eeff.mass. Comparison of the
Yamanouchi et al. [28] Si:P data with Eq. (4) shows
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TABLE I. Conductivity prefactors and phase shift sums. In the first column, the value of y is given in parentheses.

nc 3 10218 s0 �e2�3h�kF�2nc� li,h

�cm23� �S�cm� �S�cm� � p � 0� Theory

Si:P (6) 3.73 260 42.9 0.17 2dl, d1 � d0�m
Si:As (6) 8.57 376 56.6 0.15 m � 3, l � 0.39
Si:Sb (6) 2.92 110 39.5 0.36 m � 9, l � 0.78

Si:B (2) 4.06 152 63.6 0.42 3dl, d1 � d0�m, d2 � d1�q
Ge:As (4) 0.34 56 22.1 0.39 m � 3, q � 6, l � 0.27
Ge:Sb (4) 0.155 92 17.0 0.18 m � 9, q � 6, l � 0.71

Ge:Ga (2) 0.186 40 22.8 0.57 m � 4.6, q � 5.7, l � 0.41 [27]
li,h�n� changes by about 15% between nc and 2nc and
less than 45% over a factor 25 in n, thus clarifying
the reason for the large width of the scaling regime for
s � 1

2 . How large must h� � EF 2 Ec�kT be to ensure
s � 0.5? The slope of F1�2�h���F0�h�� versus h� is
0.461, 0.475, 0.483, 0.487, and 0.490 at h� equal to 8, 10,
12, 14, and 16, respectively. Numerical integration of the
scattering integral in Eq. (3) confirms the change in li,h
with h� is small for h� . 5, justifying the removal of
the phase shift sum from the integral in Eq. (3). Despite
uncertainties, the results in Table I demonstrate IIS can
account for the magnitude of s0.

Traditionally, the prefactor s0 has been given as AsM

where sM is the Mott minimum metallic conductivity [Si:P
sM � 20 S�cm, A � 13]. Using localization and inter-
action corrections to explain the scaling of s�n, T � 0�
Bhatt and Ramakrishnan [29] suggest s0 � sB�n � nc�
and find A � 12 for Si:P. This calculation and theoretical
efforts for two decades presumed sB�n, T � 0� could not
explain the scaling. With sB accounting for the scaling the
logical prefactor is s0 � sB�2nc� ~ �e2�2nc�1�3�hli,h�
which is always larger than sM . A detailed comparison
of the experimental s0’s with theory requires accurate
values of dl.

Although the scaling and the exponent s �
1
2 [for b �

1] are independent of the form of the DOS just above Ec

other physical quantities might depend on the DOS and
p. These include the density of itinerant electrons na

above Ec, the mobility m (m � mH � mdrift for h� ¿ 1),
the charge diffusion coefficient D ~ �EF 2 Ec�m�e (for
h� ¿ 1), the mean-free-path l, and the important parame-
ter kFl. The scaling of the Hall coefficient [1�RH�n, T !
0� ~ �n�nc 2 1�g, 0.34 , g , 0.44, for Si:P, Si:As, Si:B
[8] ] has been interpreted [15] as determining the itinerant
carrier density na � gnc�n�nc 2 1�g. Based on N�E� �
N�Ec� 1 C�n� ��E 2 Ec��E0�p one calculates na�T � 0�
to be for h� ¿ 1

na�T ! 0� � N�Ec� �EF 2 Ec�n�� 1 �C�n�E0�� p 1 1��

3 	�EF 2 Ec�n���E0
p11, (5)

where the relative importance of the two terms is not
known. It might appear that the first term in (5) would
lead to an exponent g � 1. That need not be the case and
it must be emphasized Ec�n� will have to decrease for a
rigid N�E� since nl�T ! 0� �

REc�n�
Ed

N�E� dE must de-
crease with increasing n. This suggests Ec�n� decreases
with n and if N�Ec�n�� decreases as Ec�n� decreases, con-
sistent with EF 2 Ec � E0�n�nc 2 1� it is possible to ob-
tain g , 1. This could also happen if C�n� were negative.
If the first term in Eq. (5) is dominant, then the role of
the exponent p in determining the scale of na is unclear.
The scaling of na will be discussed in detail elsewhere.
Based on the Cohen et al. [30] physical notion the mobility
� m � et�m� � ekF�2hli,hNi ~ �n�nc 2 1�1�22g� must
not diverge as n ! nc, one requires g ,

1
2 [in general

g , s], which is consistent with the known Hall data. D
scales with the same exponent as kFl which is slightly
larger than 1, namely 1 1 s 2 g. A previous analy-
sis [15] using the excess scaling CESR linewidth data
[31] yielded 1�tc ~ D ~ �n�nc 2 1�h with h � 0.95 for
Si:As and 0.90 for Si:P. To satisfy the Einstein rela-
tion this required b � 0.76 for Si:As and 0.73 for Si:P.
That analysis was based on l varying slowly near nc so
that 1�tc and D scaled with the same exponent. The
present analysis suggests l ! 0 as n ! nc with a scal-
ing exponent 1 2 g. The previous analysis employed
kF ~ �na�1�3 ~ �n�nc 2 1�g�3 and required the effective
mass to scale with an exponent 2g�3 2 b. For the present
case m� � const since the theory is a one electron theory
neglecting e-e interactions except through the screening
in the phase shifts. If one uses the scaling 1�tc from the
CESR results and kFl � 2�EF 2 Ec�tc�h̄ the scaling ex-
ponent for kFl is 0.05 for Si:As and 0.1 for Si:P, thus lead-
ing to a very small change in kFl between 2nc and 1.01nc.
The CESR is done in the absence of an applied dc voltage
and the magnitude of the cross section might differ for this
case, but the scaling with n�nc 2 1 should have been the
same. This difference is not understood. The lack of a
theoretical understanding of the exponent g has no effect
on the scaling result in Eq. (4) and the basic result s �

1
2

when b � 1.
Mott’s sM derivation was based on the Ioffe-Regel cri-

terion that kFl $ 1 and the notion that na � n � Nd . The
present analysis demonstrates kFl ~ �EF 2 Ec�3�2�Ni .
The scaling of Ni �Ni � na� is much slower than
�EF 2 Ec�3�2 leading to the scaling of kFl. To keep kFl
from scaling would also argue no scaling of D and would
1541
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require g � 3�2 and would produce a divergence of m.
Both of these consequences appear untenable and argue
the importance of g , s.

The role of neutral impurity scattering (NIS) needs
to be considered, because as n ! nc1 the density of
neutral impurities Nn approaches the doping density
n � ND 2 NA � ND . For 1�tn � Nny�sn� and as-
suming the two scattering rates are additive (the only
plausible assumption) one has t

21
eff � t

21
i 1 t21

n �
�4py�k2� �Nili,h 1 Nnln,h� where ln,h is the same
form as li,h, but the phase shifts for neutral impurity
scattering must satisfy the restriction Sl�2l 1 1�dl � 0.
This leads to a correction factor for sIIS of the form
�1 1 �Nn�Ni� �ln,h�li,h��21. Since ln,h ø li,h the cor-
rection is only of possible importance close to nc where
the ratio Nn�Ni becomes large. This ratio can be esti-
mated from the Hall data using na � gnc�n�nc 2 1�g,
na � Ni , Nn 1 Ni � n. The ratio Nn�Ni for Si:P
�g � 1.9, g � 0.34� is 0.24 at 1.1nc, 1.5 at 1.01nc, and
4.3 at 1.001nc. ln,h�li,h is not known for these systems,
but for impurities in alkali metals has been calculated
by Ball et al. [32] to be of order 0.05 for Li:Ag�Li:Mg.
Kohn and Vosko [33] have obtained a ratio 0.14 for
Cu:Ag�Cu:Zn. For systems like Si:P, Ge:As, and Ge:Ga
the potentials of the impurity and host atoms are similar
and the phase shifts contributing to ln,h may be much
smaller than for Li:Ag and Cu:Ag. Two other reasons why
NIS may be even less important than the above expression
would indicate are (1) the increasing importance of spatial
inhomogeneity and of “percolating” conducting filaments
[16] as n ! nc; (2) in the regime kFl , 1 the electron
wavelength is much greater than the neutral donor spacing
and scattering from individual neutral donors becomes
problematic. This is also the regime where weak local-
ization corrections badly break down and the Heisenberg
uncertainty principle says the itinerant electron’s position
is not determined to better than 2p�kF , which becomes
larger than the donor spacing. The crucial s�n, T ! 0�
data for Si:P and Ge:Ga exhibit scaling consistent with
sIIS ~ �EF 2 Ec�1�2 for n�nc 2 1 , 0.001 with no ob-
servable deviations, or far into the regime where kFl , 1.
This suggests NIS is not important, but also argues the
Ioffe-Regel criterion is not applicable for these systems.

In summary, it is shown the Boltzmann conductivity can
explain the T � 0 scaling of the conductivity. In the de-
generate regime for the weakly compensated case, em-
ploying the two-component model and a mobility edge
from Anderson localization, the Boltzmann conductivity
for ionized impurity scattering explains the scaling expo-
nent s �

1
2 first observed for Si:P and the large width of

the scaling regime. The scaling of the diffusion coeffi-
cient, Hall coefficient, and the mobility scaling can also
be explained, but the role of DOS on the critical behavior
remains unclear. The scaling exponent s doesn’t depend
on n or the form of the DOS.
1542
The author is grateful for useful suggestions from D. F.
Holcomb. This work was supported in part by NSF Grant
No. DMR-9803969.

[1] M. A. Paalanen et al., Phys. Rev. Lett. 48, 1284 (1982);
G. A. Thomas et al., Phys. Rev. B 27, 3897 (1983).

[2] P. F. Newman and D. F. Holcomb, Phys. Rev. B 28, 628
(1983); W. N. Shafarman et al., Phys. Rev. B 40, 1212
(1989).

[3] A. P. Long and M. Pepper, Solid State Electron. 28, 61
(1985).

[4] P. Dai, Y. Zhang, and M. P. Sarachik, Phys. Rev. Lett. 66,
1914 (1991).

[5] G. A. Thomas et al., Phys. Rev. B 25, 4288 (1982).
[6] A. N. Ionov et al., Pis’ma Zh. Eksp. Teor. Fiz. 54, 470

(1991) [JETP Lett. 54, 473 (1991)].
[7] K. M. Itoh et al., Phys. Rev. Lett. 77, 4058 (1996); M.

Watanabe et al., Phys. Rev. B 58, 9851 (1998).
[8] T. G. Castner, Phys. Rev. B 52, 12 434 (1995).
[9] F. J. Wegner Z. Phys. B 25, 327 (1976).

[10] E. Abrahams et al., Phys. Rev. Lett. 42, 673 (1979).
[11] S. Hikami, Phys. Rev. B 24, 2671 (1981).
[12] P. W. Anderson, in Localization, Interaction and Transport

Phenomena, edited by B. Kramer, G. Bergmann, and Y.
Bruynseraede (Springer, Berlin, 1985), p. 12.

[13] G. S. Grest and P. A. Lee, Phys. Rev. Lett. 50, 693 (1983).
[14] M. Kaveh, Philos. Mag. 52, L1 (1985); N. F. Mott and M.

Kaveh, Philos. Mag. B 55, 1 (1987).
[15] T. G. Castner, Phys. Rev. B 55, 4003 (1997).
[16] J. C. Phillips, Europhys. Lett. 14, 367 (1991); Proc. Natl.

Acad. Sci. U.S.A. 94, 10 528 (1997).
[17] B. L. Altshuler and A. G. Aronov, Sov. Phys. JETP 50, 968

(1979); Solid State Commun. 46, 429 (1983).
[18] D. Chattopadhyay and H. J. Queisser, Rev. Mod. Phys. 53,

745 (1981).
[19] V. A. Johnson and K. Lark-Horowitz, Phys. Rev. 71, 374

(1947); 72, 531 (1947).
[20] E. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950).
[21] H. Brooks, in Advances in Electronics and Electron

Physics, edited by L. Marton (Academic, New York,
1955), Vol. 7, p. 85.

[22] P. W. Anderson, Phys. Rev. 109, 1942 (1958).
[23] R. Mansfield, Proc. R. Soc. London Sect. B 69, 76 (1956).
[24] J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).
[25] C. Kittel, Quantum Theory of Solids (Wiley, New York,

1963), Chap. 18.
[26] N. F. Mott, Adv. Phys. 16, 49 (1967); Philos. Mag. 26, 1015

(1972).
[27] A. Seeger, Metallic Solid Solutions, edited by J. Friedel

and A. Guinier (Benjamin, New York, 1963), p. VII-1.
[28] C. Yamanouchi et al., J. Phys. Soc. Jpn. 22, 859 (1967).
[29] R. N. Bhatt and T. V. Ramakrishnan, Phys. Rev. B 28, 6091

(1983).
[30] M. H. Cohen et al., Phys. Rev. B 30, 4493 (1984).
[31] V. Zarafis and T. G. Castner, Phys. Rev. B 36, 6198 (1987).
[32] M. A. Ball et al., Phys. Rev. 81, 662 (1969).
[33] W. Kohn and S. H. Vosko, Phys. Rev. 119, 912 (1960).


