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Commensurability, Excitation Gap, and Topology in Quantum Many-Particle Systems
on a Periodic Lattice

Masaki Oshikawa
Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan

(Received 9 August 1999)

In combination with Laughlin’s treatment of the quantized Hall conductivity, the Lieb-Schultz-
Mattis argument is extended to quantum many-particle systems (including quantum spin systems) with
a conserved particle number on a periodic lattice in arbitrary dimensions. Regardless of dimensionality,
interaction strength, and particle statistics (Bose or Fermi), a finite excitation gap is possible only when
the particle number per unit cell of the ground state is an integer.

PACS numbers: 71.10.Fd, 75.10.Jm, 75.60.Ej
Strongly interacting quantum many-particle systems are
one of the central topics of theoretical physics. The renor-
malization group (RG) is an important concept in studying
such problems [1]. According to the RG picture, low-
energy, long-distance behavior of a quantum many-
particle system is governed by RG fixed points. A
quantum critical system, which has gapless excitation
spectrum, is renormalized into a critical RG fixed point.
However, in general, a critical RG fixed point allows some
relevant perturbations. When the perturbations are added,
the system is driven away from the critical fixed point.
Such a system generally has a finite excitation gap. Then
it is expected that a gapless quantum critical system is un-
stable and achieved only by an appropriate fine-tuning of
the Hamiltonian, which makes the relevant perturbations
vanish.

In reality, there are rather many quantum critical system
with gapless excitation spectrum, obtained without any ap-
parent fine-tuning. Thus, one may naturally ask a question:
Is there some mechanism which protects a gapless critical
system? There is one well-known mechanism of such
kind: a gapless Nambu-Goldstone mode [2] exists when
the system has a spontaneously broken continuous sym-
metry. In fact, it describes variety of gapless excitations
in quantum many-body systems, such as spin waves and
phonons, etc. However, it does not exhaust all the (stable)
quantum critical systems. On the other hand, few universal
mechanisms other than the Nambu-Goldstone theorem are
known [3].

In this Letter, we argue that an incommensurability is
another universal mechanism which protects the gapless
excitation spectrum in quantum many-particle systems.
We will show the following: In a quantum many-
particle system defined on a periodic lattice, with an
exactly conserved particle number, a finite excitation gap
is possible only if the particle number per unit cell of the
ground state is an integer.

This condition to have a finite gap may be called the
“commensurability condition.” When the particle number
per unit cell [4] of the lattice is n � p�q, where p and
q are coprimes, a gapful ground state must spontaneously
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break the translation symmetry, so that the unit cell of the
ground state is enlarged by a factor of q. In the case of a
quantum spin system with the conserved total magnetiza-
tion

P
j Sz

j , mapping of the spin system to an interacting
boson system gives S 2 m particles per spin, where S is
the spin quantum number and m is the average magnetiza-
tion per spin.

An incommensurate filling corresponds to the limit of
large q, giving large ground-state degeneracy if there is a
finite excitation gap. This usually implies the spectrum is
actually gapless [5]. That the incommensurate filling gives
a gapless spectrum is empirically recognized more or less.
In fact, all trivial ground states (e.g., completely dimer-
ized state) with an excitation gap, as well as the less trivial
valence-bond solid states [6], satisfy the commensurability
condition. However, it is not trivial whether the incom-
mensurability generally guarantees gapless excitations in
the presence of interaction and quantum fluctuation.

If a gapful phase is adiabatically connected to those
trivial states within the Hamiltonians conserving the par-
ticle number and periodicity, it must also satisfy the same
commensurability condition. This is because an infinitesi-
mal modification of the Hamiltonian does not mix states
with a different particle number; thus the particle number
per unit cell in the ground state is unchanged during the
adiabatic change, if the gap always remains open. This ex-
plains the stability of the particle density n in such cases
(e.g., in the “strong coupling” approach to the magnetiza-
tion plateau [7]). However, this argument does not exclude
the possibility of a gapful phase, which is not adiabatically
connected to any trivial state, not obeying the commensu-
rability condition.

In this Letter, based on a topological argument, we
will show that the commensurability condition is a robust
nonperturbative constraint. We consider general quantum
many-particle systems on a lattice with a periodic structure
with any strength of interaction, in D dimensions. For sim-
plicity, here we assume that there is a single species of par-
ticles. We assume that the number of particles is conserved
(i.e., commutes with the Hamiltonian). Let us call the di-
rection of an arbitrary chosen primitive vector �a of the
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lattice as the x direction. We impose the periodic bound-
ary condition in the x direction with length L measured
in units of j �aj. Defining the translation operator Tx which
translates the system by �a, the periodic boundary condition
is represented as TL

x � 1, and the Hamiltonian invariant
under the translation Tx . The “cross section” of the lat-
tice is defined so that the whole lattice is spanned (without
overlap) by translation of the cross section by Tx . We de-
note the number of unit cells contained in the cross section
by C; the total volume (i.e., number of unit cells) of the
system is given by CL.

In one dimension (including ladders, etc.), the proposed
statement was already shown in Refs. [8,9] by gener-
alizing the Lieb-Schultz-Mattis (LSM) argument [10].
Therefore the remaining problem is to understand higher
dimensions. Applying the LSM argument to the higher
dimensions D . 1 meets a difficulty. The energy of the
variational state is bounded only by O�C�L�, which is
generally not small in the thermodynamic limit; in an
isotropic (in size) system, C � LD21.

Affleck [11] discussed some application of the LSM ar-
gument to D . 1. While in Ref. [11] only spin systems at
zero magnetization were considered, it is straightforward
to extend the discussion in Ref. [11] to quantum many-
particle systems with general particle density (quantum
spin systems with general magnetization), as was done in
one dimension [8,9]. Unfortunately, the strong anisotropy
limit C�L ! 0 is necessary to apply the LSM argument
as in Ref. [11]. He argued it plausible that the conclu-
sion is still valid for an isotropic system where C � LD21.
However, the strong anisotropy limit makes the system es-
sentially one dimensional. Thus one might suspect that
the LSM argument does not give useful information on
a higher-dimensional system which is isotropic in size.
Below, we will argue that the same conclusion holds, with-
out relying on the strong anisotropy limit.

As in Ref. [11], we impose the periodic boundary con-
dition for the x direction, and require C to be mutually
prime with q but not the anisotropy condition C ø L. The
boundary conditions for other than the x direction can be
either open or periodic if they are uniform in the x direc-
tion. The particles may or may not have a real electric
charge. Here we introduce a fictitious charge e for each
particle, which couples to an externally given (fictitious)
electromagnetic field.

Because of the periodic boundary condition in the x di-
rection, the system may be regarded as a ring. Follow-
ing Laughlin’s discussion [12] of the quantum Hall effect
(QHE), we consider a magnetic flux F piercing through
the ring. In a simplest gauge choice. the magnetic flux can
be represented by the uniform vector potential Ax � F�L
in the x direction, Now let us adiabatically increase the
magnetic flux F by a unit flux quantum F0 � hc�e, when
the system is in the ground state jC0� at F � 0. The
ground state jC0� is chosen (when the ground states are
degenerate) so that it is also an eigenstate of Tx . This is
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always possible, at least in a finite size system, because we
assumed periodic lattice structure and periodic boundary
condition in the x direction; the Hamiltonian commutes
with Tx � eiPx . Here, Px is the x component of the to-
tal (crystal) momentum. The ground state is thus also an
eigenstate of the momentum with an eigenvalue P0

x :

PxjC0� � P0
x jC0� , (1)

During the adiabatic process, the Hamiltonian is modi-
fied only by the uniform vector potential Ax � F�L in the
above gauge choice. Then the Hamiltonian always com-
mutes with Tx . When the magnetic flux reaches the unit
flux quantum, the original ground state evolves into some
state jC

0
0�. The Hamiltonian H�F� generally depends

on the flux F through the vector potential, reflecting the
Aharanov-Bohm (AB) effect. However, when the AB flux
F is equal to the unit flux quantum, there is no AB effect
and the energy spectrum is identical to the zero flux case.
In fact, the vector potential is eliminated by the large gauge
transformation,

U � exp

∑
2pi
L

X
�r

xn�r

∏
, (2)

where n�r is the particle number operator at site �r , and x
is the x coordinate of �r . Namely, the Hamiltonian with
the unit flux quantum goes back to the original one by
the large gauge transformation as UH�F0�U21 � H�0�.
By the same transformation, the adiabatic evolution of the
ground state jC

0
0� is mapped to UjC

0
0�. Thus, after the

adiabatic procedure and the large gauge transformation, we
get back to the original Hamiltonian but the ground state
jC0� is changed to UjC

0
0�.

On the other hand, in the presence of a finite excitation
gap, the ground state jC0� can be transformed only into
itself or, possibly, into another one of degenerate ground
states during the adiabatic process [12,13]. As already ex-
plained, the reason why the LSM argument has been ap-
plied only to one dimension (or to the strong anisotropic
limit) is that, the energy expectation value of the varia-
tional state is bounded only by O�C�L�, which is generally
not small. Thus, one cannot say UjC0� is always a low-
energy state in D . 1 dimensions. However, applying the
adiabatic argument, we are able to claim that, if the system
has a finite excitation gap, the outcome of the adiabatic
evolution UjC0

0� should be one of the ground states [14].
In the case of QHE, an implicit assumption [12] of

uniqueness of the ground state led to an integer quanti-
zation of Hall conductivity. However, as pointed out by
Tao and Wu [13], it is possible that the ground states are
degenerate, and that is what is needed in fractional QHE.
Therefore we have to check whether UjC

0
0� is identical to

jC0� or not.
Here, let us recall that UjC0�, which is similar to UjC

0
0�,

is nothing but the variational state constructed in the LSM
argument and its generalizations [8,10,11,15]. Now we
see a rather close relation between LSM and Laughlin’s
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arguments. While our state UjC
0
0� is not identical to the

LSM state UjC0�, we can still invoke the LSM orthogo-
nality argument used for UjC0�.

We have chosen the original ground state as an eigen-
state of Px as in Eq. (1). Since the Hamiltonian always
commutes with Px during the adiabatic process, the eigen-
value of Px is unchanged. This can be seen easily from
perturbation theory on an infinitesimal increase of the AB
flux; the infinitesimal modification of the Hamiltonian
commutes with Px and it does not mix states with dif-
ferent eigenvalues of Px . Thus, jC0

0� belongs to the same
eigenvalue P0

x as in Eq. (1). Now, after the gauge transfor-
mation, jC0

0� is transformed to UjC
0
0�, which may belong

to a different eigenvalue. By using the identity

U21TxU � Tx exp

"
2pi

X
�r

n�r

L

#
, (3)

we see that UjC
0
0� is an eigenstate of Px with Px �

P0
x 1 2pnC. Thus, if we choose C to be mutually prime

with q (n � p�q), UjC0
0� is orthogonal to jC0

0� and jC0�,
because it belongs to a different eigenvalue of Px . By
repeating the same procedure several times, we can con-
clude that there are at least q degenerate ground states.
Thus we have shown that the similar conclusion to the one-
dimensional case [8,9] holds in any dimensions, without
relying on the strong anisotropy limit. The optimistic
view taken in Ref. [11] is actually justified, as far as the
anisotropy condition is concerned. It is valid for arbitrary
strong interaction, and is even independent of the particle
statistics (Bose/Fermi). The ground-state degeneracy is a
robust, nonperturbative property related to the topology of
the gauge field and the symmetries of the system.

An unsatisfactory point still remaining is that we have
to take C to be mutually prime with q. If C is an integral
multiple of q, nothing can be said on the degeneracy, and
a unique ground state with an excitation gap is possible in
principle. This is also related to the fact that the present
argument is not yet mathematically rigorous for the ther-
modynamic limit. (Compare to Ref. [15].) However, if we
assume that the ground-state degeneracy does depend on
whether C is an integral multiple of q or not in a large
enough system, it suggests some long-range structure of
period q. Then it is naturally expected [11] that the ground
states have the q-fold degeneracy anyway, for a sufficiently
large system. In addition, the present argument can be ap-
plied to many different boundary conditions, because there
are various possible choices of the primitive vector �a and
the corresponding cross section. The degeneracy looks less
artificial in light of this fact.

The ground states in a finite system would be actually
split by exponentially small energy due to tunneling ef-
fects. In a finite size system, the q (near-) ground states
jCn� (n � 0, 1, . . . , q 2 1) are eigenstates of the momen-
tum Px : PxjCn� � �2pn�q� jCn�. However, in the ther-
modynamic limit, the physical ground states are given by
jC̃j�’s, which are defined as jC̃j� �
P

n eiPxj jCn�. These
physical ground states are connected by the translation
operator:

TxjC̃j� � jC̃� j11� mod n� . (4)

Thus the translation symmetry (to x direction) is sponta-
neously broken, and the periodicity of the ground state is
an integral multiple of q. This concludes the derivation of
the proposed statement.

We note that Lee and Shankar [16] had derived a similar
statement for the limited case of hard-core models in two
dimensions. However, their argument relies on a certain
field-theory mapping, and looks less reliable compared to
ours. In fact, their statement appears to be too strong:
they state that there must be a charge density wave (CDW)
order if the system with a fractional filling n , 1 has a
gap. This has a rather simple counterexample: the spon-
taneously dimerized ground state of a S � 1�2 Heisen-
berg magnet at zero magnetization, which corresponds to
a hard-core boson system with n � 1�2, has no long-range
Néel-type (namely, CDW) order. On the other hand, the
spontaneously dimerized state does break the translational
symmetry, and is consistent with our conclusion.

The ground-state degeneracy of S � 1�2 quantum
spin systems has been discussed in several different
contexts, for example, in Ref. [17]. In particular, there
have been a lot of discussions on the possibility of the
exotic spin-liquid state called the resonating valence bond
(RVB) state. While various possibilities were considered
under the name of RVB, here we refer to the proposals
[18,19] of a disordered ground state with a finite excitation
gap, but without any apparent breaking of the translation
symmetry. If there is really such a spin-liquid state, it
appears contradictory to our result. This might be the
reason [11] why there is no established example of such
an RVB ground state, despite intensive search in various
S � 1�2 spin systems with odd number of spins per
unit cell.

However, in spite of its uniform appearance, some de-
generacy is argued to exist [18,20] in the RVB state, un-
der the periodic boundary condition. In Refs. [18,20], this
degeneracy is argued to be unphysical. For the degener-
acy to be unphysical, it must be that no physical operators
distinguish the ground states with the spontaneously bro-
ken translation symmetry. While we are not sure it is pos-
sible, we do not rule out such a possibility. In any case, the
(near-) degeneracy of the finite size system concluded from
the present argument seems consistent with Refs. [18,20].

The ground-state degeneracy in a gapped phase required
by the present argument is related to the commensurabil-
ity. Intuitively, this is quite natural; the particles can be
locked into a stable ground state only when it can have
a commensurate structure with the lattice. Such an intui-
tion is, however, more or less based on some trivial states
which can be easily imagined in minds. Nevertheless, the
commensurability condition turned out to be essential even
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in the presence of arbitrarily strong interaction and quan-
tum fluctuation, because of the topological mechanism dis-
cussed in the present Letter.

In generic cases, a finite excitation gap would be pos-
sible only at special commensurate (rational) filling. In
case of charged particles, such a gapped phase includes
Mott and band insulators. On the other hand, gapless
phases at generic filling includes superfluid, Fermi liquid,
and possibly other conducting phases. In case of quantum
spin systems, the gapful phases are related to the magneti-
zation plateau at quantized magnetization. In any dimen-
sions, a magnetization plateau with a finite excitation gap
is possible only if the commensurability condition is satis-
fied: n�S 2 m� � integer, where n is the number of spins
in the unit cell of the ground state, similar to the one-
dimensional case [8]. In fact, several magnetization
plateaus reported in D . 1 dimensions (examples include
[21]) satisfy this quantization condition. However, a
plateau in a magnetization curve appears if there is no
gapless excitation which changes the total magnetization.
As already mentioned in Ref. [8], the LSM argument (and
the present argument) does not directly guarantee gapless
excitations of such kind. Thus, it may be possible to have
an “exceptional” magnetization plateau which does not
obey the above simple quantization condition, if there are
gapless excitations only with the same total magnetization
as the ground state. In one dimension, all plateaus should
obey the quantization condition as far as the general
Abelian bosonization treatment [8] is valid. (However,
see [22] for a possible exceptional “plateau” at m � 0,
and [23] for a discussion in the doped case.) In higher di-
mensions, the situation is less clear, while certainly many
plateaus [21] satisfy the simple quantization condition.
An exceptional plateau at m � 0 might be realized in
Kagomé lattice [24], which is argued to have singlet
gapless excitations.

Finally, we note that our commensurability condition
has obvious generalizations to the spinful electron systems,
Kondo lattices, and other multispecies particle systems in
arbitrary dimensions.
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