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From Microscopic Interactions to Macroscopic Laws of Cluster Evolution
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We derive macroscopic governing laws of growth velocity, surface tension, mobility, critical nucleus
size, and morphological evolution of clusters, from microscopic scale master equations for a prototype
surface reaction system with long range adsorbate-adsorbate interactions.
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Intermolecular forces often determine macroscopic phe-
nomena in a wide spectrum of applications ranging from
catalysis, to epitaxial growth of materials, to agglomera-
tion of particles. In particular, attractive interactions result
in formation of clusters which subsequently affect macro-
scopic dynamics. For example, cluster and more gener-
ally pattern formation of adsorbates and their evolution
on catalytic surfaces result in deviations of rate expres-
sions from classical mass action kinetic laws, and affect
dynamics and reactor design. These examples underscore
the need for understanding the role of microscopic inter-
actions in macroscopic dynamics. In this Letter, we focus
on cluster evolution in catalytic processes.

Surface reactions on single crystals of catalysts have tra-
ditionally been modeled using continuum-type diffusion-
reaction models, where the adlayer has been assumed to
be spatially uniform. This mean-field approach treats inter-
actions only phenomenologically. Molecular simulations,
such as lattice-gas Monte Carlo (MC), are best suited to
model intermolecular forces along with their influence on
catalytic kinetics [1].

A major disadvantage of MC simulations is their compu-
tational intensity which limits calculations to small length
scales and short times. In contrast, many experimental
techniques used to probe layers of adsorbates are limited
to micrometers, and real systems are of even larger macro-
scopic length scales. Recent developments on the com-
plex relations of microscopic Ising-type systems and their
approximating, meso- and macroscopic theories, in a gen-
eral nonequilibrium statistical mechanics context, include
[2–6]. Furthermore, a mesoscopic model for catalytic sur-
faces was developed in [7].

Here we present a general and systematic mathematical
approach to derive macroscopic scale laws starting from
microscopic scale information through the mesoscopic
local mean-field theory. Such an approach can provide
information over relatively large length scales which are
experimentally more easily accessible. The mathematical
techniques developed so far regarding the derivation of
macroscopic scale laws [2,4–6] mostly address Ising
systems equipped with a single updating mechanism,
although some simple combined mechanisms were also
studied (see references listed in [4–6]). The novelty of the
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results reported in this Letter lies with addressing more
realistic systems where multiple microscopic mechanisms
such as surface diffusion, reaction, and adsorption or de-
sorption coexist and interact. Our mathematical techniques
describe concretely this combined effect on the macro-
scopic scale laws through derived Kubo-Green formulas
for the cluster mobility and surface tension. The prototype
physical model we consider consists of the molecular
adsorption of species A onto a catalytic surface. The
adsorbed species A� can desorb back into the fluid phase,
diffuse on the surface, or react through a unimolecular
surface reaction to give product B. Nonideality in the
adsorbed layer is caused by adsorbate-adsorbate attractive
interactions which, when strong enough, can lead to a
multivalued isotherm [1,8].

We will first present a straightforward generalization of
the mesoscopic theory developed in [7], when all micro-
scopic processes occur simultaneously. For long range in-
teratomic potentials, Arrhenius desorption dynamics, and
Metropolis surface diffusion, the mesoscopic local mean-
field equation for the coverage u is

ut 2 D= ? �=u 2 bu�1 2 u�=Jm � u� 2

�kap�1 2 u� 2 kdu exp�2bJd � u�� 1 kru � 0 . (1)

Here Jd and Jm are the intermolecular potentials for sur-
face desorption and migration. Furthermore, D is the dif-
fusion constant, kr , kd , and ka denote, respectively, the
reaction, desorption, and adsorption constants, p is the
partial pressure of the gaseous species A, and J � u de-
notes the convolution. In this Letter we focus on studying
the asymptotics, and the resulting cluster evolution, of two
special cases of (1), when kr � 0: first, the Fickian diffu-
sion case,

ut 2 DDu 2 �kap�1 2 u� 2 kdu exp�2bJd � u�� � 0 ,

(2)

and second, the case presented in [7], where Jd � Jm � J.
Although the prototype system we consider is two dimen-
sional, we carry out all our calculations in Rn.

Next we state some of the basic properties of (1) and
(2). Steady state solutions of either equation satisfy the al-
gebraic equation f�x� :� a�1 2 x� 2 xe2lx � 0, where
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FIG. 1. Velocity of a shrinking cluster of the dense phase (gray
circle) vs its inverse radius. Inset (a) shows snapshots of two
clusters of dilute phase (white circle) of different initial radii at
times t�e indicated. The parameters are l � 6 and a � 0.0497.
Inset (b) shows the phase diagram for the adsorption-desorption
model, in the absence of a surface reaction.

a � kap�kd and l � J0b, J0 �
R

J�r� dr . Figure 1(b)
(cf. [7]) shows schematically the phase diagram as a func-
tion of the dimensionless pressure a and the interaction
parameter l. Outside the cuspy envelope, in region I (re-
spectively, III) adsorbates form a dilute (respectively,
dense) phase. Within the cuspy envelope (region II), both
phases can exist and f�x� has three roots m2 , m0 , m1,
where m1 and m2 correspond to the dense and the dilute
phases of the system, respectively. The dynamics of clus-
ter evolution depends on the subregion separated by the
stationary coexistence curve [the dotted line in Fig. 1(b)],
satisfying a � e2l�2.

One-dimensional standing and traveling waves for
Eqs. (1) and (2) are crucial in our analysis below, since
they connect high and low density phases across a cluster
boundary. These special solutions are of the type u�r , t� �
q�r ? e 2 ct�, r [ Rn, where e is any unit vector, q �
q�j�, j [ R, and c � c�a, l� denotes the speed of the
wave. There are no general rigorous results available on
the existence of traveling waves for (1); however, some
numerical simulations for identical interaction potentials
Jm � Jd � J were carried out in [7]. In this special case,
on the line of stationary coexistence, the standing wave q
of (1) satisfies

2J̃ � q 1
1
b

ln

µ
q

1 2 q

∂
� 2

1
2

J0, q�6`� � m6 .

(3)

In addition, �q . 0, where �?� denotes the derivative with
respect to the j variable. From here on we assume that the
interaction potential J is non-negative and radially sym-
metric, and we define J̃�z � �

R
Rn21 J��z 2 1 jr 0j2�1�2 dr 0,

z [ R. The existence of such standing waves is shown
in [3].
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It turns out (using the methods in [9]) that (2) admits
monotone traveling wave solutions q � q�j� with speed
c � c�a, l�, satisfying

2c�a, l� �q 2 Dq̈ 2 kap�1 2 q�

1kdq exp�2bJ̃ � q� � 0, q�6`� � m6 .

(4)

We now focus on the main results of this Letter, regard-
ing the evolution of clusters in the long space-time asymp-
totics of (1) and (2). We consider two distinct scaling
regimes of the equations: (i) When the parameters �a, l� lie
away from the stationary coexistence line [see Fig. 1(b)],
the speed of propagation of clusters is nonzero as the trav-
eling wave analysis indicates. We scale space-time in (2)
as �r , t� � �re21, te21�; thus the transitions between
high and low density regions (described by traveling
waves) become sharper for e ø 1, and clear cluster
boundaries emerge, denoted by Gt where t is the rescaled
time. (ii) When the parameters �a, l� lie within O�e� of
the line of stationary coexistence, then the wave q � qe

moves slowly, i.e., c � ce�a, l� � O�e� and so do the
corresponding clusters. To capture effectively this slow
motion, along with possible effects due to the cluster
geometry we scale space-time in (2) as �r , t� �
�re21, te22�. Physically these scalings represent a long
characteristic time compared to the desorption time, i.e.,
taken as e21k21

d and e22k21
d , respectively, and a ratio of

diffusion length to macroscopic length proportional to e

times the square root of a constant, still denoted by D in
the scaled equations.

Initially we concentrate on the study of Eq. (2). We
will carry out the analysis first for the case when the pa-
rameters �a, l� lie within O�e� of the line of stationary
coexistence. We consider the solution ansatz for (2) in the
scaling regime (ii),

u�r, t� � qe���e21d�r , t���� 1 eQ���e21d�r, t���� 1 O�e2� ,

(5)

where qe is the traveling wave, solving (4) with speed
c � ce�a, l�. Q denotes a higher order corrector, which
is identified by solving an appropriate “cell” problem [see
(6) below]. It is the condition guaranteeing the solvability
of the cell problem that yields the Kubo-Green formulas
for the surface tension and mobility below. We now define
the signed distance function d � d�r , t� from a point r [
Rn to the cluster boundary Gt; see [5] for precise defi-
nitions. We remind the reader that the normal velocity V
of Gt is given by V � dt , while the outward normal unit
vector of Gt is 2Dd and its mean curvature is k � 2Dd.
It is possible to show with formal asymptotics (and also
rigorously) that the local equilibrium ansatz (5) describes
a solution of (2) around a cluster boundary [see also the



VOLUME 84, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 14 FEBRUARY 2000
FIG. 2. Contours at values 0.25, 0.50, and 0.75 of u for an
initially square cluster of the dense phase embedded in the dilute
phase, when l � 6 and (a) a � 0.07 (subregion IIb), (b) a �
0.037 (subregion IIa), and (c) a � 0.05 (near the coexistence
line), at indicated times. The initial cluster covers 25% of the
total simulation area.

inset of Fig. 2(a) for a numerical validation of the ansatz,
even past singularities of the cluster boundary]. It remains
to identify the morphological evolution of the clusters.

Inserting the ansatz (5) into the rescaled (2) and ignoring
the higher order terms, we obtain

LDQ � �kdq exp�2bJ̃ � q��21 �q

Ω
dt 2 DDd 2

ce�a, l�
e

æ

2
b

2

Z
J�r 0� �q�? 1 r 0 ? e� �ê ? r 0�2 dr 0 Dd , (6)

where e and ê are any two orthogonal unit vectors and q
denotes the standing wave for (4) obtained when we set
e � 0 in qe . The operator LD is the linearization of (4)
around q. The Fredholm theory implies that Eq. (6) is
solvable for Q if and only if the right-hand side is or-
thogonal in L2�R� to the kernel of the adjoint L �

D of LD .
In earlier work [5], where surface diffusion terms were
not included, i.e., D � 0, the operator LD � L0 is self-
adjoint and one easily gets that kerL �

0 � kerL0 � �q�?�R.
This is not the case here so we need to study separately
kerL �

D . Using the implicit function theorem, we can show
that there is a solution xD of L �

DxD � 0 when D is small
enough. The comparison principle for (2) also implies
that in this case kerL �

D � xD�?�R, and xD . 0. This
result can be extended to any positive diffusion coeffi-
cients D by a continuation argument. We now multi-
ply (6) by xD and integrate. The left-hand side vanishes
since kerL �

D � xD�?�R; thus we have that on the interface
Gt , dt � msDd 1 mL. This equation readily implies the
macroscopic law for the normal velocity V of the cluster
boundaries Gt ,

V � 2msk 1 mL . (7)
The integration against xD also yields that the mobility
m and surface tension s are given by the Kubo-Green
formulas

m � b

∑Z `

2`

�q�j�xD�j�
Dq̈ 1 kap�1 2 q�

dj

∏
21

, (8)

s �
D
b

Z `

2`

�q�j�xD�j�
Dq̈ 1 kap�1 2 q�

dj 1
1
2

3
Z `

2`

Z
J�r 0� �q�j 1 r 0 ? e�xD�j� �ê ? r 0�2 dr 0 dj .

(9)

Furthermore, L � �h�b�
R`

2`��1 2 q�j��xD�j��Dq̈ 1

kap�1 2 q�� dj. Note that when D � 0, xD � �q.
Because of the radial symmetry of J, the right-hand side
of (9) is independent of the particular choice of e and ê.
Since xD . 0 we have that m, s . 0. The formulas (8)
and (9) specify the relationship between the macroscopic
properties of the propagating clusters on one hand, and
the microscopic parameters on the other.

Similarly one handles cluster evolution away from the
line of stationary coexistence. In this case, we substitute
the ansatz (5) in (2) under the rescaling (i), where we em-
ploy the traveling wave with speed c � c�a, l�. Follow-
ing the previous techniques we have the macroscopic law

V � 2emsk 1 c�a, l� . (10)

Here the mobility m and surface tension s are given by
the formulas (8) and (9), when q and xD are replaced by
their traveling wave counterparts. The derivation of (7)
and (10) from (2) is valid even past the formation of front
singularities (e.g., sintering of two clusters), since (2) has
a comparison principle. For the mathematical techniques
necessary, we refer to [5,10]. Similar velocity laws in
related scaling regimes were also derived from reaction
diffusion equations and Ising spin flip systems [5,11].

We now turn towards the analysis of Eq. (1) in the spe-
cial case Jm � Jd � J, when the parameters �a, l� lie
close to the curve of stationary coexistence. Our tech-
niques apply for all parameter choices with the necessary
scaling modifications of (1) outlined earlier in model (2).
Proceeding as in the analysis of the Fickian model, we ob-
tain that the normal velocity of the cluster boundaries is
given by (7), where the mobility m and surface tension s

are given by the Kubo-Green formulas

m � b

∑Z `

2`

�q�j�x�j�
kap�1 2 q�

dj

∏21

, (11)

s �
1
2

Z `

2`

Z
J�r 0� �q�j 1 r 0 ? e�x�j� �ê ? r 0�2 dr 0 dj ,

(12)

where q is the standing wave (3), and L � �h�pb� 3

�m1 2 m2�. Here x is the solution of L �x � 0, where
L � denotes the adjoint of the operator obtained from the
linearization of (1) around the standing wave q. Since
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kerM � �q�?�R, where M is the linearization of (3)
around q, Mt � J̃ � t 2

1
b F0�q�t, and F�q� �

ln�q��1 2 q��, we readily obtain that x solves

2

Ω
q�1 2 q�

µ
D

kap�1 2 q�
x

�∂�æ
1 x � �q, x�6`� � 0 ,

(13)
and that kerL � � x�?�R. Furthermore, by the maximum
principle and the fact that �q . 0, we have that x . 0
and thus m . 0. Interestingly, comparison of two extreme
cases, namely, the equal potentials case and the Fickian
case considered above, indicates that macroscopic laws
have an explicit dependence on the diffusion constant D
only in the Fickian case. This result is typically not con-
sidered in the classical nucleation (continuum level) theory.

The Kubo-Green formulas (8), (9), (11), and (12) and
the velocity law (7) allow us to calculate explicitly the
macroscopic cluster nucleation radius R�, close to the co-
existence line. Because of the isotropy of the interaction
potentials we obtain that R� � s�L. Formulas (8), (9),
(11), and (12) yield the precise dependence of the critical
radius on the microscopics.

To numerically validate the approximation of the meso-
scopic equations with the macroscopic interface evolution
laws, we have carried out simulations using for illustration
the Fickian model (2). On a 151 3 151 lattice we consider
a second-order finite difference discretization scheme of
(2) with reflective boundary conditions. Initially, clusters
of one phase are embedded in the other phase. The inter-
atomic potential taken from [7] is �l�pr2

0 � exp�2r2�r2
0 �,

although other choices are also possible. In the simulations
reported here, we take r0 � 2�150 and e � 1�600.

First, simulations were performed for D � 1, l � 6,
and a � 0.0497 (in region IIa, near the coexistence line).
Figure 1 shows the speed of a shrinking circular cluster
(of the dense phase embedded in the dilute phase) ver-
sus the inverse of its radius from direct numerical simu-
lations of (2) giving V � 20.005�R 1 0.046. Within the
accuracy of the simulations, the linearity of macroscopic
law (7) is confirmed, and the intercept is in excellent
agreement with the speed, mL � 0.0467, of a 1D trav-
eling wave (k � 0), computed independently. Further-
more, using the above estimates, the critical nucleus radius
is R� � ms�mL � 0.108. Two illustrative examples of
simulations in Fig. 1(a) confirm this value of R� when the
evolution (growth or shrinking) of dilute phase clusters,
embedded in the dense phase, is considered for the same
conditions.

As another test of the numerical accuracy of the macro-
scopic laws, the case of D � 0 was considered. By com-
puting the standing wave, the values of m and L were
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independently computed giving mL � 0.0216h. Simula-
tions of 1D traveling waves at various pressures eh from
the coexistence line gave speeds within 20% of this value.
We believe that this agreement can be improved by more
accurate computation of �q, by employing, for example,
front tracking techniques.

In Fig. 2 we depict contours, i.e., level curves of the so-
lution u of (2) lying between the two steady state solutions
m6. Note that the asymptotic expansion (5) implies that
as e ! 0, all such contours along with the whole transi-
tion region between u � m1 and u � m2 collapse to the
sharp cluster boundary Gt whose evolution is given by (7)
or (10). According to (10), far from the coexistence line,
patterns evolve with the traveling wave speed, and cur-
vature effects are only of order e. This is, in fact, seen
in Fig. 2 near the corners of a growing cluster in subre-
gion IIb . In contrast, near the coexistence line, curvature
effects dominate according to (7).

Further results for other diffusion dynamics (e.g., Ar-
rhenius) and anisotropic interaction potentials can also be
obtained. It will also be of interest to compare direct simu-
lations of (7) and (10) using the level-set method [12], to
the mesoscopic equations (1) and (2), as well as to the cor-
responding microscopic Monte Carlo algorithms.
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