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Nagel Scaling, Relaxation, and Universality in the Kinetic Ising Model
on an Alternating Isotopic Chain
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The dynamic critical exponent and the frequency and wave-vector dependent susceptibility of the
kinetic Ising model on an alternating isotopic chain with Glauber dynamics are examined. The analysis
provides a connection between a microscopic model and the Nagel scaling curve originally proposed to
describe dielectric susceptibility measurements of several glass-forming liquids. While support is given
to the hypothesis relating the Nagel scaling to multiple relaxation processes, it is also found that the
scaling function may exhibit plateau regions and does not hold for all temperatures.

PACS numbers: 64.60.Ht, 75.10.Hk
Experimental work on dielectric relaxation in glass-
forming liquids has in recent years been reported in terms
of a new (thought to be universal) scaling function [1]
which is presumed to be related to multifractal scaling.
While the more usual normalized Debye scaling in terms of
a single relaxation time is very simple (one chooses to scale
the frequency with the inverse of the relaxation time and
the real and imaginary parts are then divided by their values
at zero and one, respectively), in the so-called Nagel plot
the abscissa is �1 1 W� log10�v�vp��W2 and the ordinate
is log10�x 00�v�vp�vDx��W . Here, x 00 is the imaginary
part of the susceptibility, W is the full width at half maxi-
mum of x 00, v is the frequency and vp the one corre-
sponding to the peak in x 00, and Dx � x�0� 2 x` is the
static susceptibility. Despite its undeniable phenomenolog-
ical success, such scaling is not quite well understood on
a physical basis. The authors of this proposal advance the
idea that the presence of more than one relaxation process
is not alien to this form and thus suggest that multifractal-
ity such as the one present in theories of chaos may well
be behind the new scaling. In order to gain some insight
into the physical origin of the Nagel scaling, it seems ap-
propriate to consider simple but well established models in
which both universal features are unquestionable and more
than one relaxation mechanism is present. A good candi-
date may be found among kinetic Ising models.

The scaling hypothesis of Halperin and Hohenberg [2]
relates the time scale t and the correlation length j and
introduces the dynamic critical exponent z. In the case of
Ising models, z was for a long time believed to be univer-
sal, depending on the nature of conserved quantities and of
those features—for instance, dimensionality [3]—which
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determine their static universality class. However, it is
now well established that for some simple systems this
exponent is nonuniversal [4–10]. In particular, in the case
of one-dimensional Glauber dynamics [11] the alternating
isotopic chain [8] presents universal behavior (in the sense
that it leads to the same value of the dynamic critical expo-
nent as the homogeneous chain), whereas the alternating-
bond chain does not [8–19] (see, however, Ref. [20]).
Because of the fact of this universality of z, the isotopic
alternating Ising chain with Glauber dynamics provides
a test model in which to assess the value of the con-
nection between multiple relaxation mechanisms and the
Nagel plot. The model consists of a closed linear chain
with N sites occupied by two isotopes (characterized by
two different spin relaxation times) that are alternately ar-
ranged. The Hamiltonian is the usual Ising Hamiltonian
given by

H � 2J
NX

j�1

sjsj11 , (1)

where sj is a stochastic (time-dependent) spin variable as-
suming the values 61 and J the coupling constant. The
configuration of the chain is specified by the set of val-
ues �s1, s2, . . . , sN � � �sN � at time t. This configuration
evolves in time due to interactions with a heat bath. We
assume for this chain the usual Glauber dynamics so that
the transition probabilities are given by

wi�si� � ai

∑
1 2

g

2
�si21si 1 sisi11�

∏
, (2)

where g � tanh�2J�kBT �, kB being the Boltzmann con-
stant and T the absolute temperature, and ai is the inverse
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of the relaxation time ti of spin i in the absence of spin in-
teraction. If we now let a1 and a2 represent the inverses of
the free spin relaxation times of chains composed solely of
spins of species 1 or species 2, respectively, then we can
set ai � a1 2 �21�ia2, where a1 � �a1 1 a2��2 and
a2 � �a1 2 a2��2.

The time dependent probability P��sN �, t� for a given
spin configuration satisfies the master equation

dP��sN �, t�
dt

� 2

NX
i�1

wi�si�P��sN �, t�

1

NX
i�1

wi�2si�P�Ti�sN �, t� , (3)

where Ti�sN � � �s1, s2, . . . , si21, 2si , si11, . . . , sN �.
The dynamical properties we are interested in, namely
the dynamic critical exponent and the susceptibility,
require the knowledge of some moments of the probability
P��sN �, t�. Hence, we introduce the following expectation
values and correlation functions defined as

qi�t� � 	si�t�
 �
X
�sN �

siP��sN �, t� , (4)

ri,j�t� � 	si�t�sj�t�
 �
X
�sN �

sisjP��sN �, t� , (5)

and

ci,j�t0, t0 1 t� � Q�t� 	si�t0�sj�t0 1 t�


�
X

�sN �,�sN0 �

s0
iP��sN 0

�, t0�

3 sjp��sN �j�sN 0

�, t� , (6)

where Q�t� is the Heaviside step function and the sums
run over all possible configurations. The second equality
of Eq. (6), which gives the formal definition of the time-
delayed correlation function, involves p��sN �j�sN 0�, t�,
the conditional probability of the chain having the configu-
ration �sN � at time t0 1 t provided it had the configuration
�sN 0� � �s0

1, s0
2, . . . , s

0
N � at time t0. Multiplying the mas-

ter equation by the appropriate quantities and performing
the required summations we obtain the set of time evolu-
tion equations that will be used in our later development.
These are given by

dqj

dt
� 2aj

∑
qj 2

g

2
�qj21 1 qj21�

∏
(7)

and

dci,j�t0, t0 1 t�
dt

� ri,j�t0�d�t� 2 ajci,j�t0, t0 1 t�

1
ajg

2
�ci,j21�t0, t0 1 t�

1 ci,j11�t0, t0 1 t�� . (8)

We now impose translational invariance and intro-
duce eqk , the (spatial) Fourier transform of qj , the
t0 ! ` limit of the (temporal) Fourier transform of
1508
cl�t0, t0 1 t� � ci,j�t0, t0 1 t� (with l � j 2 i) denoted

by bcl�v�, and eCk�v�, the spatial Fourier transform ofbcl�v�, defined through

qj �
1

p
N

X
k

eqk exp�ikj� , (9)

bcl�v� � lim
t0!`

1
2p

Z `

2`
cl�t0, t0 1 t� exp�2ivt� dt , (10)

and

eCk�v� � 	s2ksk
v �
1
N

X
l

bcl�v� exp�2ikl� . (11)

In terms of these quantities, Eqs. (7) and (8) may be
rewritten, respectively, as

dCk

dt
� MkCk (12)

and

ivbcl�v� � r`
l

2 al

µbcl�v� 2
g

2
�bcl21�v� 1 bcl11�v��

∂
,

(13)
where

Ck �

µ eqkeqk2p

∂
, (14)

Mk �

∑
2a1�1 2 g cosk� 2a2�1 1 g cosk�
2a2�1 2 g cosk� 2a1�1 1 g cosk�

∏
, (15)

and r`
l � limt!` rl�t� is the value of the pair correlation

function corresponding to the stationary solution of the
equations of motion in the limit t ! `.

The solution to Eq. (12), which yields the magnetiza-
tion, is straightforward, namely

Ck�t� � eMk tCk�0� . (16)

The relaxation process of the wave-vector dependent
magnetization is determined by the eigenvalues of Mk .
These are given by

l6
k � 2a1 6

q
a

2
2 1 �a2

1 2 a
2
2�g2 cos2k . (17)

The inverses of the (k-dependent) relaxation times t
6
k

of the 6kth modes are precisely the l
6
k . In the critical re-

gion, that is, when T ! 0 and k ! 0, l
2
k ! 22a1 while

l
1
k ! 0. This means that the critical mode is the one cor-

responding to l
1
k . As for the relaxation time, in this limit

one gets

Re�2l1
k � � 2

1
tk

�
�a2

1 2 a
2
2�

2a1
j22�1 1 �jk�2� ,

(18)

where we have identified the correlation length j as j �
exp�2J�kBT ��2. By comparing the former expression
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with the one of the dynamic scaling hypothesis t
21
k �

j2zf�jk�, one finds z � 2, so that, as stated above, in
the case of one-dimensional Glauber dynamics the alter-
nating isotopic chain [8] leads to the same value of z as
the homogeneous chain.

Now we turn to the calculation of the other interesting
response function, namely the frequency and wave-vector
dependent susceptibility Sk�v�, which, by virtue of the
fluctuation-dissipation theorem [21], is defined by
Sk�v� �
	sks2k
`

kBT
2

iv	sks2k
v

kBT
, (19)

where 	sks2k 
` � 1��1 2 g cosk� cosh�2J�kBT� is the
static correlation function and 	sks2k 
v is the Fourier
transform of the dynamic one. It should be noted that
x � kBTS0�v��	s0s0 
`. After some rather lengthy
but not too complicated algebraic manipulations starting
with Eq. (14) one may arrive at the following result [8],
namely
Sk�v� �
1

kBT �1 2 g cosk� cosh 2J
kBT

∑
1 2

iv�iv 1 a1�1 1 g cosk��
�iv 1 a1�2 2

1
2g2a1a2�1 1 cos2k� 2 a

2
2

∏
, (20)
from which, using also Eq. (17) with k � 0, x can be
expressed in the form

x �
�1 2 g� �a1 1 a2�

4

3

∑
1 2 f�a1, a2, g�

iv 2 l
1
0

2
1 1 f�a1, a2, g�

iv 2 l
2
0

∏
.

(21)

Here, the (temperature dependent) function f�a1, a2, g�
is given by

f�a1, a2, g� �
�a1 2 a2�2 2 4a1a2g2

�a1 1 a2�
p

�a1 2 a2�2 1 4a1a2g2
.

(22)

If we set a1 � a2 in Eq. (21), i.e., we take the uniform
chain, then of course the resulting susceptibility has the
simple Debye form. Although not shown, we have checked
that this form does not lead to Nagel scaling. On the other
hand, for the case g � 0, we get

xg�0 �
1
2

∑
a1

iv 1 a1
1

a2

iv 1 a2

∏
, (23)

so that the general structure of the result for the suscep-
tibility of the alternating isotopic chain is preserved irre-
spective of the value of g (i.e., of the temperature), namely
a linear combination of two Debye-like terms.

In Figs. 1–3 we present Nagel plots for the cases
a1 � 1 and a2 � 2, a1 � 1 and a2 � 10, and a1 � 1
and a2 � 1000, respectively, and different values of
1�T� � 2J�kBT . In the insets we include the plots
x 00�v��x 00�vp� against v�vp which are the natural
variables of the Debye scaling. We note that as soon as
the relaxation times become different, except for very
low values of T�, the agreement with the Nagel scaling
improves significantly (cf. Fig. 1) until such scaling is
virtually perfect as depicted in Figs. 2 and 3. On the
other hand, the almost perfect Debye scaling in Fig. 1
is completely lost in Fig. 3. It should be noted that if
the two time scales are very different, plateau regions
eventually appear in the Nagel plot as clearly seen in
Fig. 3. Whether the presence of more than two relaxa-
tion times, even if not as widely separated as in the case
of Fig. 3, would also lead to the same type of results is
something requiring future assessment. Also, the precise
location of the critical value of T� above which the Nagel
scaling holds as well as the nature of the crossover and of
the “low T�” regime are worth investigating.

It is important to point out that the experiments in
which the Nagel plots have been more successful concern
glass-forming systems in which topological constraints are
assumed to be crucial. However, a clear-cut connection
between such constraints and the different relaxation
mechanisms has not been established. In this sense, it is
rewarding that the alternating isotopic Ising chain, which
is relatively simple with regards to relaxation phenomena
but shows, nevertheless, universal behavior in terms of
the dynamic critical exponent, provides perhaps the first
microscopic model in which this scaling is shown to arise.
We further want to mention that in order to include some
of the features present in systems such as the above men-
tioned glass-forming liquids, we have also considered in
the present context a generalization to an alternating iso-
topic chain of our quasi one-dimensional kinetic Ising-like
model of linear polymeric chains [22], in which the
Hamiltonian was chosen as to reduce to the one giving the
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FIG. 1. Nagel plot for a1 � 1 and a2 � 2 and for T� �
1, 2, 5, 10, and 100. There is reasonable agreement with the
scaling form for this choice except for low T �. The inset con-
tains the plot of x 00�v��x 00�vp� vs v�vp in order to test the
Debye-like behavior.
1509



VOLUME 84, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 14 FEBRUARY 2000
-4 -2 0 2 4 6 8

-14

-12

-10

-8

-6

-4

-2

0

2

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
χ"

( ω
)/
χ"

( ω
p)

ω ω/
p

α1
 = 1, α2

 = 10

 T* = 5
 T* = 10
 T* = 50
 T* = 100

W
-1

 Lo
g 10

 (
 χ

" ω
p/
ω

∆χ
)

W-1(1+W-1) Log
10

 ( ω ω/ p
 )

FIG. 2. The same as Fig. 1 but with the choice a1 � 1, a2 �
10, and T � � 5, 10, 50, and 100. The improvement in the agree-
ment with the Nagel scaling is rather noticeable, while the op-
posite trend is observed with respect to the Debye scaling.

intramolecular energy of the Gibbs–di Marzio lattice
model [23]. Interestingly enough in this model, in which
the stochastic dynamics implied a rule of transition for the
configurational changes which was tied to the creation
or disappearance of flexes and so only some states were
selected (in the magnetic language this means that the
domain wall motion is through a biased random walk),
similar conclusions concerning the Nagel scaling readily
follow. These will be reported elsewhere. Finally, it would
be interesting to test whether the same kind of scaling is
present in other Ising models related to glassy systems,
such as the spin facilitated kinetic Ising model originally
introduced by Fredrickson and Andersen [24] and recently
studied in connection with glassy dynamics [25].
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FIG. 3. The same as Figs. 1 and 2 but for a1 � 1, a2 � 1000,
and T� � 5, 10, 50, and 100. A plateau region in the Nagel plot
is clearly present in this case. Here, the behavior is definitely
non-Debye.
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