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Breakdown of Scaling in the Nonequilibrium Critical Dynamics
of the Two-Dimensional XY Model
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The approach to equilibrium, from a nonequilibrium initial state, in a system at its critical point is
usually described by a scaling theory with a single growing length scale, j�t� � t1�z , where z is the
dynamic exponent that governs the equilibrium dynamics. We show that, for the 2D XY model, the rate
of approach to equilibrium depends on the initial condition. In particular, j�t� � t1�2 if no free vortices
are present in the initial state, while j�t� � �t� lnt�1�2 if free vortices are present.

PACS numbers: 64.60.Ht, 64.60.Fr, 75.10.Jm
While the theory of equilibrium critical phenomena has
been a mature subject for more than 20 years, nonequi-
librium critical phenomena still pose some interesting
challenges. The simplest scenario consists of a system
evolving at its critical point from a nonequilibrium
initial state in which the system was prepared at time
t � 0. Since the characteristic relaxation time is in-
finite at criticality, an infinite system will never reach
equilibrium. Instead, the system evolves towards equilib-
rium through a nonequilibrium scaling state. Consider,
for example, the equal-time pair correlation function,
C�r , t� � �f�x, t�f�x 1 r, t��, where f is the order-
parameter field. In the nonequilibrium scaling state it has
the form

C�r , t� �
c

rd221h
f

µ
r

j�t�

∂
, (1)

where d is dimension of space, h is the usual critical ex-
ponent, and c is a constant. The scaling form (1) holds in
the limit r ¿ a, j�t� ¿ a, with r�j�t� arbitrary, where
a is a microscopic cutoff, e.g., a lattice spacing. The first
factor in (1) is the equilibrium correlation function: Re-
quiring that this be recovered for t � ` forces f�0� � 1.

The physical interpretation of j�t� is the length scale up
to which critical correlations have been established at time
t: C�r , t� � cr2�d221h�, the equilibrium result holds, for
a ø r ø j�t�. Dynamical scaling suggests

j�t� � t1�z (2)

for large t, where z is the usual dynamic exponent charac-
terizing temporal correlations in equilibrium. This result
has been demonstrated in an expansion in e � 4 2 d us-
ing standard field-theoretic renormalization group methods
[1]. The importance of this result is that it shows that re-
laxation to equilibrium is governed by the same exponent
as correlations in equilibrium. A second important result
of Ref. [1] is that the relation j�t� � t1�z holds indepen-
dently of the nonequilibrium initial state, which can affect
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the scaling function, f�x�, in (1) but not the exponent z
(since this is a property of the equilibrium renormalization
group fixed point).

Two special cases illustrate the dependence of f�x� on
the initial conditions. For a disordered initial condition,
the system will remain disordered on scales r ¿ j�t�,
so f�x� will fall off rapidly for x ¿ 1. For an initial
condition with long-range order (i.e., nonzero initial
magnetization), dynamical scaling predicts that the mag-
netization M�t� will decay asymptotically as t2b�nz �
j�t�2b�n . In this case C�r , t� approaches C�`, t� �
M2�t� � t22b�nz � t2�d221h��z using standard scaling
laws. So in this case f�x� � xd221h for x ! `.

The purpose of this Letter is to challenge this simple
picture for the XY model in d � 2, with nonconserved
order parameter, at (and below) the Kosterlitz-Thouless
(KT) transition [2]. Specifically we argue that the growing
length scale j�t� satisfies (2), with z � 2, if the initial state
contains no free vortices, whereas j�t� � �t� lnt�1�2 if free
vortices are present. Earlier workers [3,4] have demon-
strated a growing length scale �t� lnt�1�2 for the zero-
temperature coarsening dynamics of a system with free
vortices (e.g., one quenched to T � 0 from high tempera-
tures). Here we argue that this form holds for all tempera-
tures T # TKT whenever free vortices (and antivortices)
are present in the initial state.

We first present numerical simulation results support-
ing this scenario and then provide the theoretical interpre-
tation. The two types of initial states we shall consider
are (a) completely ordered (no free vortices) and (b) com-
pletely random (free vortices present).

The XY model consists of planar spins � �Si� at the sites
of a square lattice of linear size L, with Hamiltonian H �
2

P
�i,j�

�Si ? �Sj , where the sum is over lattice links and we
have taken the exchange interaction to have strength unity.
We adopt conventional “heat-bath” dynamics in which a
spin is moved to a trial configuration chosen at random
on the unit circle, and the move accepted with probabil-
ity 	1 1 exp�DE�T �
21, where DE is the energy change
associated with the move and T is the temperature. The
lattice is divided into two sublattices, and the sublattices
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are updated alternately. One unit of time corresponds to
an attempted move of every spin.

A convenient quantity to study is the “time-dependent
Binder cumulant” [5,6], gL�t�, defined by

gL�t� � 2 2
�� �M2�2�
� �M2�2

, (3)

where �M�t� �
P

i
�Si�t� is the total magnetization at time

t, and �· · ·� indicates an average over independent Monte
Carlo runs (104 runs were used in practice). Because the
powers of �M in the numerator and the denominator are the
same, gL�t� depends (at a critical point, and if dynamical
scaling holds) only on the ratio j�t��L, where L is the
(linear) size of the lattice:

gL�t� � G

µ
j�t�
L

∂
, (4)

provided, as always, that both j�t� and L are sufficiently
large. This result provides the basis for a determination
of j�t� using finite-size scaling. If conventional dynami-
cal scaling holds, the scaling function G�x� may depend on
the initial state, but the scaling variable, j�t��L � t1�z�L,
will not. For an ordered initial state (all spins parallel)
G�0� � 1, while for a random initial condition (each spin
chosen independently from a unit circle) G�0� � 0 follows
from the Gaussian distribution (central limit theorem) of
�M�0�. For t ! `, G�x� approaches, in both cases, the uni-

versal value G�`) characteristic of the critical point. For
the KT phase there is actually a line of such fixed points,
T # TKT [and a corresponding set of values GT �`�], but
we will focus primarily on the KT point, TKT , using the
accepted value TKT � 0.90 [7].

Data for the ordered initial state are presented in
Fig. 1, for system sizes L � 12, 16, 24, 32, and 48. The
abscissa, t�L2, corresponds to a scaling variable t�Lz

with z � 2. This choice of z is dictated by the spin-wave
theory (i.e., no free vortices) that describes the large-scale
properties of the KT phase everywhere along the fixed
line T # TKT . The best collapse using all the data favors
a slightly lower value, but the value z � 2 clearly gives a
good scaling collapse for larger L, i.e., L $ 24 (note the
expanded scale compared to Figs. 2 and 3). Collapsing
the data for pairs of L gives effective exponents z�L1, L2�
given by z�12, 16� � 1.75�5�, z�16, 24� � 1.83�3�,
z�24, 32� � 1.96�2�, z�32, 48� � 2.00�2�, consistent with
a convergence to z � 2 for L ! `. Recent simulations
by Luo et al. [8] give similar results: z � 1.96�4� for
T � 0.90 and an ordered initial state.

The data for a random initial condition are presented
in Figs. 2 and 3. In Fig. 2, we attempt to collapse
the data with a scaling variable t�Lz . The scaling col-
lapse is very good, but a much higher value of the
dynamical exponent, z � 2.35, is required than for an
ordered initial state. For a random initial condition Luo
et al. found, by direct measurement of the time depen-
dence for a large lattice (L � 512), the slightly smaller
result z � 2.29�1� [8].
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FIG. 1. Scaling plot, with z � 2, for the time-dependent
Binder parameter, starting from an ordered initial condition, for
system sizes L � 12, 16, 24, 32, and 48.

At first sight, these results seem remarkable: Differ-
ent values of z are required to fit the approach to equilib-
rium from ordered (or “low-temperature”) and disordered
(or “high-temperature”) initial states, whereas dynamical
scaling predicts a unique value of z, namely, that which de-
scribes equilibrium correlations (in this case z � 2). What
is going on here? It is worth noting that for Ising systems
the two different initial conditions give compatible results
[9]. The data for the XY model in d � 2 seem to point
clearly to a breakdown of dynamical scaling. This is in-
deed our conclusion, but the breakdown is weaker than the
naive fit shown in Fig. 2 suggests. We will argue that, for a
disordered initial condition, the characteristic length scale
j�t� grows as �t� lnt�1�2 rather than t1�z . Before present-
ing the arguments, we test this prediction in Fig. 3, where
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FIG. 2. Scaling plot, with z � 2.35, for the time-dependent
Binder parameter, starting from a disordered initial condition,
for system sizes L � 12, 16, 24, 32, and 48.
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FIG. 3. Same as Fig. 2, but for scaling variable t�	L2 ln�t�t0�
,
with t0 � 0.5.

t�L2 ln�t�t0� is used as abscissa. The fit is excellent. The
value t0 � 0.5 was used for the short-time cutoff, but the
fit is not too sensitive to this value.

The quality of the scaling collapses in Figs. 2 and 3 are
comparable [10], but the fit used in Fig. 3 has a theoretical
underpinning. First, however, we note that the scaling form
(1), with z � 2, follows from the spin-wave theory for an
ordered initial state: No free vortices are present at t � 0,
and none gets generated by thermal noise for any T #

TKT . The calculation of C�r , t� is straightforward [11] and
gives precisely the scaling form (1) with j�t� � t1�2 and
f�x� � exp	2hJ�x��2
, where J�x� �

Rx2�8
0 �dy�y� 	1 2

exp�2y�
 and h � 1�4 for T � TKT .
For a disordered initial condition, very different con-

siderations are involved. The initial state contains many
free vortices and antivortices. The approach to the equi-
librium critical state proceeds through the annihilation of
vortex-antivortex pairs, which is a slower process than the
equilibration of spin waves. For pedagogical purposes, we
consider first the case where the system evolves at T � 0,
instead of TKT . The evolution of the system via vortex-
antivortex annihilation is an example of phase-ordering
dynamics [12]. It is convenient to adopt a continuum
approach based on the nonlinear sigma model Hamilto-
nian H � �rs�2�

R
d2r�= �f�2 (where rs is the spin-wave

stiffness), with local constraint �f2 � 1. A field configu-
ration describing a single free vortex, �f � �r�j�rj, has
an energy Ey � prs ln�L�a�, where L and a are the
system size and microscopic cutoff as before. A vortex-
antivortex pair, separated by distance R, screen each
other’s far fields at scales larger than R, leading to a
pair energy Ep � 2prs ln�R�a�, and an attractive force
F � 2dEp�dR � 22prs�R between the vortex and the
antivortex.

To discuss pair annihilation, some dynamics has to
be imposed. The Monte Carlo dynamics used here
is in the “nonconserved” universality class (i.e., the
magnetization is not conserved) described (at T � 0)
by the continuum model ≠ �f�≠t � 2GdH�d �f. This
equation can be used [3] to compute an effective fric-
tion constant g�R� associated with the motion of the
vortex and antivortex under the force F. An isolated
vortex moving at speed y in the x direction has field
configuration �f�x, y, t� � �fy�x 2 yt, y�. Energy is dis-
sipated at a rate dE�dt �

R
d2r�dH�d �f� ? �≠ �f�≠t� �

2�1�G�
R

d2r�≠ �f�≠t�2 � 2�y2�G�
R

d2r�≠ �fy�≠x�2 �
2gyy2. Inserting the equilibrium vortex configuration,
which is isotropic, gives the limiting zero-velocity friction
constant as g0 � Ey�rsG, i.e., g0, like the vortex energy
Ey , diverges logarithmically with the system size, L. For a
vortex-antivortex pair, this translates into a logarithmic de-
pendence on the separation [3], g�R� � �p�G� ln�R�a�.

In the many-vortex situation envisaged for the nonequi-
librium critical dynamics, the usual scaling arguments
[3,4,12] can be invoked, in which the pair separation,
R, is replaced by the typical spacing, j�t�, between
vortices and antivortices. The typical force on a vortex
(or antivortex) is then F � rs�j, while the typical
friction constant is g � �1�G� ln�j�a�. So the typical
speed of a vortex is dj�dt � F�g � rsG�	j ln�j�a�
,
giving j�t� � 	rsGt� ln�t�t0�
1�2, with t0 � a2�rsG. An
alternative approach leading to the same result is given
in [4].

For all T in the range 0 # T # TKT , the large-scale
properties in equilibrium are controlled by a fixed point
with zero vortex fugacity, i.e., by the spin-wave theory,
where the role of bound vortex-antivortex pairs is to
renormalize the spin-wave stiffness and kinetic coef-
ficient to temperature-dependent functions rs�T � and
G�T �. In the nonequilibrium case where free vortices
and antivortices are present, due to a disordered initial
condition, the dynamics on scales less than j�t� should
therefore be described, in the limit of large j�t�, by
renormalized spin-wave theory, and the asymptotic result
j�t� � 	t� ln�t�t0�
1�2 should apply to all temperatures
T # TKT , including TKT itself. This is our interpretation
of the data in Fig. 3. It accounts for the good data collapse
using the appropriate scaling variable.

The treatment of the case T . 0 via functions rs�T �
and G�T � is, however, only part of the story. A complete
treatment of thermal fluctuations should also incorporate
vortex diffusion. Consider once more a free vortex-
antivortex pair, but now at T . 0. The scale-dependent
friction constant suggests the following Langevin equation
for the relative position r of the vortex and antivortex,
valid at large separation [13]:

g�r�
dr
dt

� 2
4prs

r
r̂ 1

q
g�r�j �t� , (5)

where g�r� � ln�r�a� and each component of j �t� is an
independent Gaussian white noise with strength 4T . This
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equation can be recast as a one-dimensional Langevin
equation for a new coordinate x � r

p
g�r�:

dx�dt � �2T 2 4prs��x 1 j�t� . (6)

Thus thermal fluctuations induce a repulsive potential
for this coordinate, which competes against the usual
attraction. Simple power counting shows that, as expected,
T is an exactly marginal variable in the renormalization
group sense. However, one can show that, for any rs . 0,
vortex-antivortex annihilation (x reaching zero) will still
occur with probability one, with a characteristic time
which scales as x2

0 (where x0 is the initial value of x), i.e.,
as r2 ln�r�a�. Thus thermal fluctuations change the deter-
ministic annihilation into a stochastic annihilation (with
the probability distribution of the time-to-annihilation
depending on T ) but do not change the dependence of
the characteristic time scale on the initial separation [13].
Full details of this calculation will be given elsewhere.

Clearly our result, j�t� � �t� lnt�1�2 for a disor-
dered initial condition, is asymptotically equivalent
to an exponent z � 2 (though the logarithmic correc-
tion still represents a scaling violation). So as L and
t are increased we would expect the effective expo-
nent, obtained by forcing a fit with a scaling variable
t�Lz , to decrease towards 2. Collapsing data for pairs
of L gives effective exponents z�L1, L2� given by
z�12, 16� � 2.47�3�, z�16, 24� � 2.37�3�, z�24, 32� �
2.29�3�, and z�32, 48� � 2.34�3�. The quoted errors are
subjective. They are estimated from the quality of the
data collapse, but make no allowance for statistical errors
in the data. They therefore represent lower bounds on the
true errors [14]. With this caveat the overall decreasing
trend of the effective z with increasing L is clear and
accords with our expectations.

Although the data presented here are restricted to
the Kosterlitz-Thouless transition temperature, TKT , the
theoretical interpretation we have outlined holds for all
T # TKT . In Ref. [8], data were obtained for a range of
temperatures at and below TKT: T � 0.90, 0.86, 0.80, and
0.70. For a uniform initial state, the corresponding values
of z are 1.96�4�, 1.98�4�, 1.94�2�, and 1.98�4�, consistent
with the result z � 2, for all T # TKT , expected from
spin-wave theory. The equivalent effective exponents
obtained with a disordered initial state are consistently
larger: z � 2.29�1�, 2.31�2�, 2.33�1�, and 2.38�2�. We
have argued that the correct interpretation of these
anomalously large z values is a logarithmically modified
growth, j�t� � 	t� ln�t�t0�
1�2, of the characteristic length
scale. The slow increase of the effective exponent with
decreasing T can be accounted for by a weak temperature
dependence of the time scale t0 inside the logarithm.

For the ordered initial condition, the scaling function
G�x� in Eq. (4) can, in principle, be calculated exactly
using the spin-wave theory. This is technically more dif-
ficult, however, than the calculation [11] of the pair corre-
lation function, because the evaluation of �� �M2�2� involves
1506
four-point correlation functions. We hope to present a de-
tailed theory for G�x� in future work.

To summarize, we have argued that the rate of approach
to equilibrium at (and below) the Kosterlitz-Thouless tran-
sition temperature depends on whether or not the initial
state contains unbound vortices. Thus for a disordered ini-
tial state, where free vortices are present, the relaxation to
equilibrium is slower, by logarithmic factors, than for an
ordered initial state where no free vortices are present. It
is possible that this result is peculiar to systems with de-
fect-driven phase transitions. It goes against the expecta-
tion [1] that the scale length j�t� controlling the relaxation
to equilibrium, e.g., in (1) and (4), should be independent
of the initial conditions (although the corresponding scal-
ing functions may not be). This expectation is based on a
perturbative renormalization group treatment in 4 2 e di-
mensions. Such an approach is not sensitive to the effects
of topological defects (vortices, in this case), which are the
source of the scaling violations reported here.

A. B. thanks M. A. Moore and A. D. Rutenberg for help-
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