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Mesoscopic Analysis of Structure and Strength of Dislocation Junctions in fcc Metals
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We develop a finite-element-based nodal dislocation dynamics model to simulate the structure and
strength of dislocation junctions in fcc crystals. The model is based on anisotropic elasticity theory
supplemented by the explicit inclusion of the separation of perfect dislocations into partial dislocations
bounding a stacking fault. We demonstrate that the model reproduces in precise detail the structure of
the Lomer-Cottrell lock already obtained from atomistic simulations. In light of this success, we also
examine the strength of junctions culminating in a stress-strength diagram which is the locus of points
in stress space corresponding to dissolution of the junction.

PACS numbers: 61.72.Lk, 62.20.Fe
In fcc metals, a key mechanism limiting the move-
ment of dislocations is the “forest intersection” mecha-
nism, where segments of dislocations on a glide plane are
rendered immobile as a result of intersection with dislo-
cations on other glide planes. Such intersections can lead
to complex dislocation junction structures since the cores
of the dislocations in these metals are dissociated into par-
tial dislocations separated by a stacking fault [1]. Further-
more, the structure of the junction also depends strongly
on the geometric disposition (such as the line directions
and Burgers vector) of the participating dislocations. A
core level analysis of all the possible junction configura-
tions is therefore important from a number of perspectives.
Such core level calculations in conjunction with statistical
averaging procedures can possibly provide key parameters
that are used in models that predict the mechanical behav-
ior of metallic crystals on a macroscale. These models
include single crystal plasticity models [2] and computa-
tional models that simulate the dynamics of a large col-
lection of dislocations [3]. In this Letter we develop a
mesoscopic dislocation dynamics model that can be used
to simulate the structures and strength of dislocation junc-
tions in fcc metals and may obviate the need for direct
atomistic simulations of these junctions.

For simple dislocation intersection geometries, the struc-
ture of dislocation junctions has been studied extensively
using the theory of linear elasticity in a series of classic pa-
pers by Hirth and co-workers [4]. Analytical insight into
more complicated intersection geometries has been gained
by using the line tension approximation for the disloca-
tion lines [5]. While this approach provides a great deal of
physical insight into the junction structure and strength, it
ignores the extended core structure of the dislocations as
well as the long range interaction between the dislocation
segments. With rapid advances in computational power in
recent years, it has become possible to perform atomistic
simulations of dislocation intersections [6–8]. Typically
these simulations [7,8] are computationally demanding and
raise serious questions concerning the role that boundary
conditions play in dictating the results.
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In the present study, we develop a mesoscopic method
to study the structure and strength of dislocation junctions
that includes the dissociation of the dislocation core into
partial dislocations. The interaction between the disloca-
tions are treated using the theory of anisotropic elasticity
[9]. We find that our method reproduces, in precise de-
tail, all the features of the dislocation junction structure
obtained from a full atomistic treatment of the dislocation
core. Our results demonstrate that the junction structure is
almost entirely determined by elastic interaction between
the partial dislocations and the stacking fault energy. In
order to clearly demonstrate the role of the stacking fault
in determining the junction structure, we consider disloca-
tion junctions in two metals, namely, Al, with a high stack-
ing fault energy (0.104 J�m2) and Ag, with a low stacking
fault energy (0.016 J�m2). We limit our discussions to the
Lomer-Cottrell lock [1]; a complete investigation of other
junctions will be reported elsewhere.

The simulations are carried out through an adaptive fi-
nite element based nodal dislocation dynamics algorithm
that is described in detail in Ref. [10]. We start our simu-
lations with straight dislocation lines that are pinned at
their end points. Simulations are carried out until the dis-
locations glide to their equilibrium configuration. Each
dislocation line is allowed to split into partial dislocations
by accounting for the energy cost of the stacking fault cre-
ated in the process. A time step of the dynamics process
consists of moving the node connecting the segments with
a velocity that is proportional to the nodal driving force.
The computation of the nodal force requires the knowledge
of the force per unit length at certain quadrature points on
the dislocation segments that are attached to the node. The
force per unit length at any point on a segment consists
of a component arising from the stresses due to all the
dislocation segments in the system including the segment
itself. The Brown regularization procedure is adopted to
guarantee that the self-stress contribution is well behaved
[10]. When the interaction between the segments belong-
ing to different dislocations is attractive, they approach
each other in the process of forming a junction. However,
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the stress acting on one of the segments due to the other
one diverges as their separation vanishes. To remove this
difficulty, we treat the stresses as constant for distances less
than a critical separation distance, rc, with a value equal to
that of the stress computed at rc. As a result, the segments
are locked once they are closer than this critical distance;
a junction has formed. From an elastic perspective, at dis-
tances larger than rc, the stresses produced by the junction
segments correspond to those produced by a dislocation
whose Burgers vector is the vector sum of those of the two
segments that make up the junction. Once the junction
is formed, it can unzip if the external stresses cause the
segments that form the junction to move away from each
other. The calculations described here were carried out
with rc � b, although we have also considered the cases
in which the cutoff was b�2 and 2b, without noticeable
change to the resulting junction structures. In addition to
the stress from the dislocation segments, the force per unit
length consists of a component arising from the stacking
fault. This component is normal to the dislocation segment
and has a magnitude that equals the stacking fault energy
and acts in a direction tending to shrink the stacking fault.
In the simulations that we describe, we have ignored the
frictional stress since we have found that its inclusion is
unimportant. A key feature of our simulations is the adap-
tive positioning of the nodes, so that regions with large
curvature have more nodes per unit length.

We demonstrate our results by first considering the equi-
librium configuration of a Lomer-Cottrell lock as shown
in Fig. 1. This configuration has been chosen so as to
make a direct comparison of our results with the atom-
istic simulations for Al reported in Ref. [8]. The pinning
points are arranged such that in the starting configuration
the dislocation line directions make an angle of 60± with
the �1̄, 1, 0� direction. This direction coincides with the
line of intersection of the slip planes of the dislocations
that form the junction. The line directions of each of the
partial dislocations and their slip plane normals are given
in the figure. We follow the notation described in Ref. [1]
to label the Burgers vectors of the partial dislocations by
referring to the Thompson tetrahedron. For example, the
�a�2� �0, 1, 1̄� �111� dislocation splits into partial disloca-
tions Ad and dC with Burgers vectors �a�6� �1̄, 2, 1̄� and
�a�6� �1, 1, 2̄�, respectively. As is evident from the figure,
the junction segment in the case of Al has split into sepa-
rate parts. A stair-rod segment with Burgers vector gd of
the type �a�6� �110� forms an extended node on the left
side of the junction. The remaining part of the junction
is a sessile Lomer dislocation segment. The length of the
stair-rod segment is 38 Å, while the Lomer is 42 Å, which
is in excellent agreement with the atomistic results [8]. The
dislocation dynamics model also agrees with the atomistic
results in predicting the structure of the right hand node,
which is pointlike and is the meeting point of constricted
dislocation segments.

As an extension of earlier results and to highlight the
dependence of the junction structure on the stacking fault
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FIG. 1. Structure of the Lomer-Cottrell junction in Al and Ag.
The line directions and the Burgers vectors of the dislocation
segments are indicated in the figure. The junction forms along
the dotted line, which is the line of intersection of the two slip
planes.

energy, we have also computed the geometry of the Lomer-
Cottrell junction in Ag. The dislocation junction in Ag, for
this configuration, has an entirely different structure. The
junction segment is entirely composed of a stair-rod dislo-
cation of length 180 Å The smaller stacking fault energy
keeps the segments dC and Dg from participating in the
junction formation process.

We now consider the effect of altering the junction
angle on the structure of the dislocation junction. We use
f to denote the angle between the dislocation line direc-
tion in the starting configuration and the �1̄, 1, 0� direc-
tion, lJ for the junction length, and 2l for the distance
between the pinning points. In Fig. 2, we plot the junction
length and structure as the orientation of the pinning points
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is altered. For comparison we also show the results ob-
tained by using both the isotropic [5] and anisotropic line-
tension models within isotropic elasticity. We find that the
results of our simulations are in very good agreement with
the predictions of the anisotropic line-tension model [11].
For the positive angle junctions, the participating disloca-
tions enter in mostly “edge” orientation, while in the case
of negative angle junctions, they enter in the screw orien-
tation. As a result, the energy gain in the former case is
bigger than the latter by a factor 1��1 2 n�, where n is
the Poisson ratio. This has two immediate consequences
that are borne out by our simulations: first, the edgelike
junctions are stabler to higher incidence angles, and, sec-
ond, the edge locks are strong relative to “screw” locks for
the same incidence angle. In fact, transmission electron
microscopy studies of dislocation junctions [12] reveal a
preponderance of the edgelike junctions over their screw
counterparts. While one explanation for the instability of
the screw junctions is the ability of the parent dislocations
to cross-slip resulting in the transformation of the sessile
lock to a glissile one, our simulations provide yet another
explanation for the stability of the edgelike junctions.

Far more interesting than the structure of junctions is
their behavior under stress. Figure 3 shows the evolution
of the dislocation junction in Fig. 1a under the influence

FIG. 2. Junction length of the Lomer-Cottrell lock in Al as
a function of the line directions of the participating disloca-
tions. The dashed and dash-dotted lines are the predictions of
the direction dependent and independent line-tension models, re-
spectively, and the “squares” are the results obtained using our
mesoscopic model. We also show the evolution of the junction
structure as the line directions are varied.
of an externally applied stress. The resolved shear stress
on the dislocations in the �1, 1, 1� and �1̄, 1̄, 1� slip planes
are labeled s1 and s2, respectively. We have chosen the
orientation of the applied stress for this series of pictures
such that s1 � s2. On increasing the stress, the length of
the Lomer segment initially increases on going from no ap-
plied stress to a stress of 0.006m (m is the shear modulus).
On increasing the stress further, the junction translates and
undergoes an unzipping mechanism, whereby the length
of the Lomer segment decreases. This behavior is evident
for the stress level of 0.009m. The junction breaks at a
stress level of about 0.012m after which they continue to
bow out. The configuration shown at stress of 0.012m, is
not in equilibrium, but a snapshot after the junction has
been destroyed. We have carried out similar calculations
for several values of resolved shear stress acting on the two
dislocations. A “yield surface” for dislocation destruction
is shown in Fig. 4. This surface is symmetric about the
line s1 � s2 but depends on the sign of s1 and s2. This
symmetry breaking is readily understood by looking at the
configurations of the dislocations under action of positive
and negative s1 (denoted in Fig. 4 by points A and B,
respectively) with s2 � 0. The presence of the stair-rod
node makes it more difficult for the horizontal segment to
bow out in case �A� compared to case �B� and requires a
larger value of shear stress to break the junction.

It is interesting to compare the predictions of the
line-tension model and the atomistic simulations with the
results obtained from our simulations. An important
prediction of the line-tension model is the scaling of the
breaking stress of symmetric junctions with the distance

FIG. 3. Evolution of the symmetric Lomer-Cottrell lock in
Fig. 1a, on applying an external stress. The resolved shear stress
on the two junctions is the same.
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FIG. 4. The yield surface for the symmetric Lomer-Cottrell
lock in Fig. 1a. The stresses are in the units of shear modulus
of Al. We also display the structure of the junctions prior to
destruction for the points marked A and B.

between the pinning points, written as 2l. The line-tension
model predicts the average critical resolved shear stress
to break the symmetric junctions to be �0.5mb�l. We
have simulated the breaking of symmetric junctions with
lengths ranging from 300 Å to 1 mm by applying the
external stress in different orientations. We have found
that the critical breaking stress scales as sc 	 mb�l.
For the cases s1 � s2 and s1 � 2s2 the critical
resolved shear stress behaves like sc � 0.64mb�l and
sc � 1.24mb�l, respectively. For the 300 Å junction, for
the case when s1 � 1.3s2, the atomistic simulations gave
sc � 0.017m � 0.8mb�l, which is in good agreement
with our results.

Before presenting our concluding remarks, we point out
the features that are missed in our model and the effect they
may have on the results discussed thus far. In our simula-
tions, the dislocations do not acquire a jog as they cross.
While this does not affect the junction structure, it will
alter the breaking stress, since the external stress should
supply the energy required to create the jog. However, the
jog contribution to the breaking stress is only a small frac-
tion of the stress required to unzip the junctions [5]. In
order to examine the effect of the stress cutoff distance,
rc, we have also carried out all the above simulations by
choosing rc to equal b�2 and 2b. The junction structure
showed very little difference in the two calculations. Also,
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the breaking stress in all the cases was within 10% of the
values reported here.

In conclusion, we have developed an efficient method
to study dislocation interactions in fcc metals. We have
illustrated that the method can provide “rules” like critical
angle for junction formation and breaking stress criteria,
which can be used in 3D dislocation dynamics models.
The results from our simulations for junctions in different
configurations, when appropriately averaged, can provide
parameters related to junction strength in models for
single crystal plasticity. Fits to these parameters from
tension tests on single crystals have revealed a hierarchy of
junction strengths in fcc crystals [13]. Work is in progress
to verify the observed hierarchy on the basis of our
simulations.
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