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Dislocation Patterning: From Micro- to Mesoscale Description

I. Groma and B. Bakó
Eötvös University, Department of General Physics, P.O. Box 32, 1518 Budapest, Hungary

(Received 4 August 1999)

During the plastic deformation of crystalline material the dislocations, being the carriers of the plas-
tic flow, tend to form different patterns. Because of the long range nature of dislocation-dislocation
interaction, the origin of this self-ordering phenomenon is still an open question. The paper presents a
stochastic two-dimensional model derived directly from the properties of individual dislocations making
it possible to investigate the problem on a mesoscale. Numerical results obtained in double slip configu-
ration indicate the development of cell structure with fractal character.

PACS numbers: 61.72.Lk, 61.72.Bb, 61.72.Cc
It is well known that during the plastic deformation of
crystalline materials dislocations form different structures.
Although a huge amount of experimental and theoretical
work has been done over the past three decades, there is
not a generally accepted model for dislocation patterning.
Since the time evolution of the dislocation network is an
extremely complex process, the goal of the analytical and
numerical investigations is to find out the important dislo-
cation phenomena responsible for the development of or-
dered dislocation networks.

Several analytical models (the concept of low energy
dislocation structure proposed by Kulhman-Wilsdorf [1],
the models of Holt [2] and Rickman and Viñals [3] that
apply irreversible thermodynamics analogy, the reaction-
diffusion approach elaborated by Walgraef and Aifantis
[4], the concept of the dislocation sweeping mechanism
developed by Kratochvil et al. [5,6], and the stochastic
dislocation dynamics description proposed by Hähner [7])
have been developed since dislocation patterning was first
observed. The common feature of these models is that
the behavior of the dislocation system is described on a
continuum level by operating with balance equations of
different densities. Most of them are based on analogy with
other physical problems such as spinodal decomposition,
oscillating chemical reactions, etc. As a consequence of
this, the properties of individual dislocations are taken into
account only in a very indirect way, making questionable
the validity of the models proposed thus far.

Another possible approach to study the collective
behavior of dislocations is the numerical integration of the
equations of motion of dislocations. Several investigations
have been performed both in 2D [8–17] and in 3D [18,19].
Most of them predict tendency of formation of organized
dislocation structures but they are far from convincing.
This is mainly due to the fact that because of the long range
dislocation-dislocation interaction the numerical inte-
gration of the equations of motion of dislocations is
computationally very expensive, limiting considerably
the affordable size of simulation volume and dislocation
density.

The aim of the present paper is to outline a method
which is able to deal with a mesoscopic size dislocation
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assembly and in which the precise form of dislocation-
dislocation interaction is directly taken into account. It
is important to stress that the proposed mesoscale evolu-
tion equations are derived from the equations of motion
of the individual dislocations, so the mesoscale and the
microscale are directly linked. For reducing the complex-
ity only the time evolution of a system of parallel straight
edge dislocations (with line vector l) is considered result-
ing a 2D problem, but it seems to be feasible to extend the
model to more realistic 3D configurations.

In order to derive the governing equations on mesoscale
let us start with the dynamics of interacting individual
edge dislocations. Because of the dissipative nature of
the dislocation motion, in the equation of motion of a
dislocation a friction force has to be taken into account
beside the force acting on a dislocation due to the elastic
field [the Peach-Koehler (PK) force]. The friction force is
commonly (almost in each numerical simulation known by
the authors) assumed to be proportional to the dislocation
velocity. (It describes friction related to phonon creation.)
Since in most cases the inertia term is negligible compared
to the PK force, the dynamics of the dislocations can be
described with an over-damped-type system of equations
of motion [13], i.e., for the kth dislocation,

vk � BFk
s � B�bk�s0 1 sint�nk�bk�jbkj, k � 1, N ,

(1)

where bk is the Burgers vector of the kth dislocation, nk �
b�jbj 3 k is a unit vector perpendicular to bk , sint is the
stress tensor field created by the entire dislocation system,
s0 is the external stress tensor, and B is the dislocation
mobility. As it is explained in [20], the internal force
(the projection of the PK force to the slip plane) Fint

k �
�bksintnk�bk�jbk j can be derived from a potential, Fint

k �
2bk�jbkj �bk=�Vk , where Vk is given by the expression

Vk�r� � 2
�nk=�

bk

NX
jfik

�nj=�g�r 2 r0� ,

g�r� �
r2

2
ln�r� .

(2)

In most of the two-dimensional dislocation dynamics
simulations Eq. (1) is integrated numerically. Because of
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the long range nature of dislocation-dislocation interaction,
however, studying the long time behavior of a disloca-
tion assembly is extremely computation expensive within
the level of this “discrete” dislocation description. For
single glide it was shown by Groma [21,22] that if short
range correlations are negligible, i.e., the system is not far
from homogeneous, a self-consistent field (SCF)-type con-
tinuum approach can be derived from Eq. (1). The SCF
model can be generalized for a configuration of ns slip
systems (in the 2D configuration considered, this means
that dislocations with more than one type of Burgers vec-
tors bl , l � 1, ns are introduced into the system) by car-
rying out the following steps: the equation of motion of
the ith dislocation (1) is multiplied by the delta func-
tion d�r 2 rk� and differentiated with respect to r, then
the equations are summed up separately for dislocations
with different Burgers vectors, resulting 2ns relations for
the

P
k d�r 2 rk�-type discrete dislocation densities. Fi-

nally, the discrete densities are replaced by locally aver-
aged (“smoothed”) densities. It can be shown [21] that
this last step can be done only if short range correlations
are negligible.

Let us denote by rl
6�r, t� the smoothed density func-

tions of dislocations with Burgers vector 6bl , and intro-
duce the notations rl�r� � rl

1�r� 1 rl
2�r�, and kl�r� �

rl
1�r� 2 rl

2�r� for the l-type “total,” and “sign” dislo-
cation densities, respectively. With these, in the SCF
approximation the potential Vl defined above has the form

Vl�r� � 2
�nl=�

bl

nsX
j�1

�nj=� �kj � g� , (3)

where kj � g �
R

kj�r0�g�r 2 r0� dr0. The time evolu-
tion of the dislocation system is described by the following
set of balance equations:

≠rl�r, t�
≠t

B�bl=�kl�r, t�
∑
tl 2

�bl=�
bl

Vl�r�
∏

� 0 , (4)

≠kl�r, t�
≠t

B�bl=�rl�r, t�
∑
tl 2

�bl=�
bl

Vl�r�
∏

� 0 , (5)
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where tl � bls0nl stands for the external resolved shear
stress in the lth slip system. If dislocation multiplica-
tion is allowed, a source term needs to be added to the
right-hand side of Eq. (4), but in the studies presented
in this paper the number of dislocations has been kept
constant.

It is easy to see that, if the external stress is constant, the
homogeneous stationary solution rl�r, t� � r

0
l , kl�r, t� �

0 satisfies the SCF equations [Eqs. (4) and (5)]. It has to
be investigated, however, whether this trivial solution is a
stable one. For this, the usual technique of linear stability
analysis can be applied.

Let us seek the solution of Eqs. (4) and (5) in the form
rl�r, t� � rl 1 drl�r, t�, kl�r, t� � dkl�r, t�, l � 1, ns,
where drl�r, t� and dkl�r, t� are small perturbations, so
their higher order terms can be neglected. The solution of
the corresponding linearized equations can be found in the
form

drl � dr
0
l exp�lt 1 iq ? r� ,

dkl � dk0
l exp�lt 1 iq ? r�, l � 1, ns ,

(6)

where i is the imaginary unit. After substituting the above
expressions into the linearized form of Eqs. (4) and (5),
one finds that drl and dkl have to fulfill the relations

ldrl 1 iBtl�q ? bl�dkl � 0, l � 1, ns , (7)

ldkl 1 iBtl�q ? bl�drl 1

2pBrl

bq4 �q ? bl�2�q ? nl�
nsX

j�1

�q ? nj�dkj � 0 .

(8)

For single glide configuration (ns � 1) it was obtained
earlier [21] that, if the wave number vector q is either
perpendicular or parallel to the Burgers vector, the real
parts of the eigenvalues l1,2 are zero, meaning that these
perturbations neither grow nor die out; they are stable.
From Eqs. (7) and (8) for ns � 2 the eigenvalues l need
to satisfy the relation
l4 1
2pBr1

bq4

£
�q ? b1�2�q ? n1�2 1 a�q ? b2�2�q ? n2�2

§
l3 1 B2t2

1

£
�q ? b1�2 1 b�q ? b2�2

§
l2 1

2pB3r1

bq4 �q ? b1�2�q ? b2�2t2
1

£
b�q ? n1�2 1 a�q ? n2�2

§
l 1 bB4t4

1�q ? b1�2�q ? b2�2 � 0 , (9)
in which the relative variables a � r2�r1 and
b � �t2�t1�2 were defined. With the introduction
of the notations q2b2Bl � �q ? bl�2, q2Nl � �q ? nl�2,
l � 1, 2, and with the normalizations l��Bbt1q� °! l

and �t1q���2pr1� °! q, Eq. (9) can be simplified to

l4 1
B1N1 1 aB2N2

q
l3 1 �B1 1 bB2�l2 1

bN1 1 aN2

q
l 1 bB1B2 � 0 .

(10)
It can be seen from the analysis of the above
form that the real part of the eigenvalues l is never
positive. It is important, however, that Re�l� is
zero for wave vectors orthogonal to the glide planes
(since B1,2 vanishes in this case), which means that
perturbations propagating in these directions are pre-
ferred. Another remarkable feature of Eq. (10) is that
the total dislocation density and the external stress
can be scaled out, i.e., the properties in the linear
regime are determined only by the relative dislocation
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population a and the direction of the external stress axis
(through b).

Since the SCF model neglects short range correlations
(SRC), it cannot be applied in the regime where the gra-
dients of the density fields are high. So, for investigating
phenomena such as dislocation cell structure formation or
development of persistent slip bands, the SCF model needs
to be further developed. In order to take into account SRC
a stochastic method was proposed by Bakó and Groma
[23,24]. It is based on the numerical observation that the
stress field generated by the dislocations has a stochastic
nature. As it is explained in detail in [25], some of the fea-
tures of the probability distribution function of the stress
field created by the dislocations in the lth slip plane Pl�t�
can be derived analytically.

(i) The center of gravity of Pl�t� is the self-consistent
field t

SF
l � �tl 2

�bl=�
bl

Vl�r�� introduced earlier.
(ii) Pl�t� decays asymptotically as Cr��r�t23 (C is

a constant determined by the angular anisotropy of the
dislocation-dislocation interaction), i.e., the tail of the dis-
tribution function depends only on the local dislocation
density.

(iii) The half width of Pl�t� is determined by the corre-
lation properties of the dislocation assembly.

Because of the complicated dislocation-dislocation cor-
relations, the precise form of the stress fluctuation dis-
tribution function cannot be determined [25]. Numerical
calculations show, however, that for a dislocation assem-
bly consisting of relatively narrow dislocation dipoles the
form

Pl�t� � Cr�r� ��t 2 t
SF
l �2�r� 1 Cr�r��23�2, (11)

is a good approximation of P�t� [24].
The above results make it possible to set up the follow-

ing stochastic O�N� algorithm (for details, see [23]): with
an appropriate coarse size the simulation area is divided
into cells. Then by counting the number of different dislo-
cations in each cell the values of the smoothed parameters
rl�r� and kl�r� are determined. They define the local P�t�.
After this each dislocation is displaced by a random value
generated according to the local stress distribution function
P�t�. The last two steps are repeated for each updating.

With this stochastic algorithm an initially homogeneous
system of 220 parallel straight edge dislocations with Burg-
ers vectors of equal magnitudes in a double-slip configura-
tion (with a � 1) was investigated under constant external
stress. (The slip geometry is defined according to Fig. 1.)
To reduce finite size and surface effects the usual periodic
replica technique [23,24] (with 224 replica dislocations)
and periodic boundary conditions were used. The simula-
tion area was divided into cells by 128 3 128 grid points.

After 5 3 105 updating the cell-like structure presented
in Fig. 2 was obtained. Each cell wall predominantly con-
sists of dislocations belonging to the same slip system
and aligned in the other slip direction. This is in agree-
ment with the prediction of the stability analysis presented
above, namely, that periodic perturbations propagating in
x

y

(2)

(1)

θ2

FIG. 1. The coordinate system used in the simulation. The
glide planes of different type were chosen parallel to the diago-
nals (u � 660± to the x direction). The external stress had only
sxx fi 0.

the direction perpendicular to the slip directions are pre-
ferred. An important feature of the obtained network is
that characteristic cell size cannot be defined. In order to
study the structure of the dislocation pattern developed, the
standard box counting method was applied. According to
Fig. 3 within the attainable magnification range (about a
factor of 20) the number of nonempty boxes N versus box
dimension relation can be well described by a power func-
tion with exponent D � 1.86, indicating fractal structure
with dimension D. This is consistent with the results of
Hähner et al. [26].

In conclusion, a self-consistent field and a stochastic dis-
location dynamics model was presented for 2D multiple-
slip dislocation configuration. They represent the
generalization of the corresponding single-slip models
published earlier. It was pointed out that, beside the
long range nature, the strong anisotropy of dislocation-
dislocation interaction plays an important role in the

FIG. 2. Cell structure (left box) obtained from an initially ho-
mogeneous dislocation distribution after 5 3 106 updating. The
dots represent dislocation lines orthogonal to the plane. The
right-hand box shows the k map. The black and white lines
are polarized dislocation walls containing dislocations with the
same type of Burgers vector. It was found that the concentration
of dislocations with opposite Burgers vectors in the polarized
walls is less than 2%.
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FIG. 3. Box counting analysis [the logarithm of the number
of nonempty boxes ln�N� versus the logarithm of the box size
ln�L�] of the Fig. 2 cell structure. The simulation area was
divided in 128 3 128 boxes. Each box containing less than 3
dislocations was considered empty during the box counting.

development of dislocation patterning, at least in the
investigated 2D case. As it was indicated earlier by
discrete dislocation dynamics simulation [10,14–16]
if dislocation motion is allowed in more than one slip
system, cell-like structure can form due to only the elastic
dislocation-dislocation interaction, i.e., because of the
internal elastic interaction the dislocation gas collapses
into walls under the influence of the external stress. In
contrast with this, in single-slip orientation dislocation
multiplication needs to be introduced to obtain ordered
dislocation structures [24]. One can state that even if
dislocations are produced homogeneously by different
multiplication processes the elastic dislocation-dislocation
interaction leads to patterning. It is important to stress
that, since the linear stability analysis does not predict
growing perturbations, only the existence of stable ones,
the observed cell formation is clearly due to nonlinear
effects already in the early stage. The understanding of
the influence of dislocation annihilation and multiplication
requires further investigations.

Furthermore, the proposed stochastic approach made
possible to increase considerably (by about a factor of 103)
the affordable number of dislocations used in the simula-
tions presented in the paper allowing us to analyze the dis-
location pattern in more detail than earlier. Finally, it is
necessary to note that the above 2D approach is only the
first step toward learning how to deal with the strongly in-
teracting dislocation assembly, but investigations are under
way to extend it to 3D.
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