
VOLUME 84, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 14 FEBRUARY 2000
Stresses in Silos: Comparison Between Theoretical Models and New Experiments

L. Vanel,1 Ph. Claudin,2 J.-Ph. Bouchaud,2 M. E. Cates,3 E. Clément,1 and J. P. Wittmer4

1L.M.D.H., Université Paris VI, 4 place Jussieu-case 86, 75005 Paris, France
2Service de Physique de l’Etat Condensé, CEA, Orme des Merisiers, 91191 Gif-sur-Yvette Cedex, France

3Department of Physics and Astronomy, University of Edinburgh, JCMB King’s Buildings, Mayfield Road,
Edinburgh EH9 3JZ, United Kingdom

4Départment de Physique des Matériaux, Université C. Bernard-Lyon I, 43 Bvd du 11 Novembre 1918,
69622 Villeurbanne, France

(Received 7 April 1999)

We present precise and reproducible mean pressure measurements at the bottom of a cylindrical granu-
lar column. If a constant overload is added, the pressure is linear in overload and nonmonotonic in the
column height. The results are quantitatively consistent with a local, linear relation between stress
components, as was recently proposed by some of us. They contradict the simplest classical (Janssen)
approximation, and may rather severely test competing models.

PACS numbers: 45.70.Cc, 83.70.Fn
The prediction of static stresses in dry, cohesionless
granular matter has become the focus of renewed attention
(see [1–4]). Surprisingly, there is no consensus on what
is the basic physics involved. Some argue that the behav-
ior is essentially elastic (ultimately justified by the slight
elastic deformation of individual grains) [1]; others argue
that it is dominated by the extremely nonlinear constraint
that tensile intergranular forces are absent [5,6]. Indeed,
some of us [4,7,8] have argued that the statics of granu-
lar materials can be described, without considering elas-
tic displacements, by assuming a local, history-dependent,
relation between stress tensor components. This gives
hyperbolic equations for the stress field, in contrast to
the elliptic (or elliptic-hyperbolic) equations of conven-
tional elastic (or elastoplastic) models. Our approach pro-
vides a simple continuum model of “force chains” [9–11];
(physical) force chains become (mathematical) character-
istics of the hyperbolic equations. In the simplest case,
these form a regular array; stresses propagate through
space via a wave equation [5,7]. According to the model,
the medium is “fragile” in a precise sense [5]: it responds
linearly to a specific class of “compatible” loads; all others
cause plastic reorganization.

This approach accounts well [8] for the pressure “dip”
below the apex of a conical sandpile poured from a point
source [12]. (It also predicts [7,8] that the dip is absent for
a pile made of successive horizontal layers, as recently con-
firmed by experiment [13].) However, it has excited strong
criticism in some quarters [3], and certainly demands fur-
ther experimental testing [1]. For example, such models
predict that if a small localized overload is placed on top
of a granular layer, the excess weight at the bottom is maxi-
mal, not directly beneath the weight, but on a ring [2,7]. To
test this directly is difficult, because of strong nonlinearity
and (especially) noise effects which hinder the interpreta-
tion of data [14,15].

A more robust and practical situation is the cylindrical
granular column, or bin. Here also noise effects come into
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play, but ways around these (by careful ensemble aver-
aging of experimental data) have been pioneered in [16].
Below we report precise measurements (beyond those of
[16]) of the effective mass Me, supported by the bottom
plate, as a function of the total mass Mt poured into a
(small) bin, with and without an added overload. With
no overload, as expected, Me�Mt� first rises linearly, then
saturates at a column height comparable to its width; for
high bins, most of the mass is “screened” by frictional
transfer to the walls. A simple hyperbolic model (called
OSL for “oriented stress linearity” [8]) gives bin results
close to, but different from, the classical Janssen approxi-
mation (recalled below) [7,17]. In contrast to traditional
methodologies [18] our new ensemble-averaged experi-
ments can distinguish these predictions; we find that OSL,
which has an extra fitting parameter, is discernibly better.
Another classical model (IFE, see below) gives wholly in-
adequate answers unless unphysical values of the wall and
bulk friction constants are used.

There then follow, from the OSL model, two impor-
tant new predictions for the effect of a uniform overload
of mass Q at the top of the granular column. First, Me

should be linear in Q; second, for large Q, Me should be
nonmonotonic in Mt . We find that, with no further fitting,
our overload experiments quantitatively confirm the OSL
predictions, strongly supporting the hyperbolic picture. At
the end of this Letter, we comment on the challenge these
new results pose to other modeling strategies.

First we recall our own approach. By stress continuity,

=isij � rgj , (1)

where sij is the (symmetric) stress tensor, r is the den-
sity of the material, and gj is the gravitational accelera-
tion. In general one needs extra physical assumptions to
close Eq. (1). For an elastic body, one assumes a (single-
valued) displacement field, and a linear relation between
stresses and strains (Hooke’s law). For poured cohesion-
less grains, the definition of a macroscopic displacement is
© 2000 The American Physical Society 1439
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problematic (see [1,4]). Instead, we assume that the ar-
rangement of granular contacts gives, on continuum length
scales, a definite relation between components of the stress
tensor [6,7,19]. One such relation, often used in the litera-
ture, is the IFE (“incipient failure everywhere”) assumption
that the material is everywhere on the verge of Coulombic
failure (see, e.g., [8,20]). Then there exists a (locally vary-
ing) set of axes n�m such that snm � snn tanf where f

is the Coulomb angle.
Our modeling strategy instead gives a fundamental role

to the network of force chains which, if grains are unde-
formable, must carry forces longitudinally [5]. One in-
terpretation of our equations is that the friction between
parallel force chains is fully mobilized; a Coulomb-like
condition, snm � snn tanc , then holds (with c # f an
“effective” friction angle) but the orientation m, which is
directed along the force chains, is now fixed by the con-
struction history and not (as in IFE) by the load [5,17].
(This assumes the load is a compatible one.) For simple
construction histories, like piles and bins, we assume that
m is the same everywhere, up to an inversion through the
central symmetry axis; m must then have a fixed angle t

to the vertical. In cylindrical polars (z, r , u) with z down-
wards, we recover the OSL model [8]

srr � h1szz 1 h2srz , (2)

with h1 � tant cot�t 2 c� and h2 � tant 2 cot�t 2

c�. Equation (2) closes the problem in two dimensions
(d � 2): inserting it into Eq. (1) gives an anisotropic
wave equation, with one characteristic along m, and
another along a direction m0 at angle t 2 c 2 p�2.
[These can be interchanged without affecting Eq. (2),
so m0 describes a second family of force chains [5].]
For d � 3, a further closure equation is needed. Our
choice here is srr � suu ; but from work on conical
piles, we expect insensitivity to this choice [8,20]. In the
bin geometry, the OSL model can then be solved exactly
(d � 2) [7,17] or numerically (d � 3). Note that IFE,
like OSL, gives propagative (hyperbolic) equations, but
these are nonlinear, unlike our wave equation.

For nonzero h2, the force chain network distinguishes
between inward and outward radial directions. This does
not contradict the axial symmetry present [8]. But if as
well the medium is locally symmetric, then h2 � 0; in
Eq. (2), this recovers the model of Ref. [7]. The latter
can be viewed as a local version of the classical Janssen
hypothesis [20,21]. Janssen proposed a constant ratio be-
tween horizontal and vertical stresses, srr � Kszz , but
neglected altogether their dependence on r . Assuming also
that friction at the wall is fully mobilized, with a friction
coefficient tanfw, he found the equation

Me � M`�1 2 exp�2Mt�M`�� , (3)

with M` � rD2�2K tanfw for d � 2, and M` �
rpD3�16K tanfw for d � 3; D is the bin diameter.

We turn now to the experimental procedure, described in
detail in [16]. The bin is a tube of diameter D � 3.8 cm,
1440
filled with beads of glass (density rb � 2.6 g�cm3,
diameter 2 mm). The bottom comprises a very stiff scale
plate (2 3 104 N�m). Initially, the tube is filled with a
low packing density; this is increased by giving it small
taps. The bottom plate is then lowered (by a few tens of
microns) and the effective mass decreases monotonically
to an asymptotic value; Me and the mean density r are
measured. The density is again increased by tapping,
the plate lowered, and further measurements taken. This
entire procedure is done about 30 times—each run giving
results for the whole range of densities. The measured
results for Me show a certain (Mt-dependent) “error bar”:
not a measurement error of the mass, but arising from
intrinsic fluctuations in the packing. This protocol is a
major advance because (i) an ensemble average value for
Me is found, improving accuracy; (ii) due to the downward
motion of the base, that wall friction is fully mobilized,
which might not otherwise be the case [22]. The wall
friction angle is measured separately as fw � 22± 6 2±

[16], thus eliminating one fit parameter.
The experimental results, for a packing density r �

1.53 g�cm3, are compared in Fig. 1 with three models:
IFE (which has no adjustable parameter once the internal
friction angle f � 25± 6 2± is known); Janssen’s equa-
tion (one adjustable parameter); and the OSL model (two
adjustable parameters). Each plotted data point is itself a
mean value, with an error bar D shown in inset 1(a). (This
is small at small Me but then grows rapidly.) To find the
best fits, we have minimized the following:

E2 � N21
X

i

�dMi
e�Di�2, (4)

where dMi
e is the difference between the ith experimental

data point and the theoretical Me value, Di the observed
error bar, and N the number of data points.
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FIG. 1. Main figure: Experimental and theoretical Me�Mt�
curves. Inset (a): Statistical dispersion of the measures. Inset
(b): Relative deviation between experiment and theory, i.e.,
dMe�D.
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For our data, the (active) IFE approach, using the mea-
sured friction values f and fw is plainly inadequate.
Better agreement with IFE is found by taking f and/or
fw as fit parameters. Even then, the fit remains poor
(e.g., E � 4.43 for r � 1.53 g�cm3), and the fitted val-
ues, f � fw � 30±, are incompatible with those found by
direct experiment. For given fw, IFE systematically over-
predicts the asymptotic stress, so the fitted fw exceeds the
real one. In systems where the wall friction is not fully
mobilized, the error is harmlessly absorbed by the fit. In
our system, the fitted value is higher than the fully mobi-
lized fw measured separately, which is unphysical.

Unlike the IFE model, Janssen’s model gives a fair ap-
proximation (E � 2; Table I) but, as shown in inset 1(b),
there is a clear systematic deviation: screening by the walls
is in turn over- and underestimated for small and large Mt

values. (Note also that our K parameters are higher than
those usually reported [18,23]: but as with IFE, low fitted
values might compensate for incompletely mobilized wall
friction.) This has led two of us [16] to propose elsewhere
an empirical model (not shown) where an excess contri-
bution from grains at the bottom of the pile is added to
the Janssen result. As shown in Table I, the best-fit OSL
model does as well as this empirical model, with an error
E � 1 [24]: the systematic deviations are reduced, in par-
ticular in the first part of the curve. This can be understood
by noting that within the OSL model, the grains contained
within a “light cone,” resting on the bottom plate, cannot
interact with the walls [16]; the mass of these grains is
completely unscreened.

Note the values found for h2. The minimum of E�h2� is
not sharp, but positive h2 is always preferred (as for other
types of grains [17]). A positive h2 means that most of the
weight follows the “inward” characteristic thus reducing
the screening effect of the walls. Conversely, in sandpiles
(created from a point source) h2 is negative [8,17]; this
“outward” transfer of weight is responsible for the pressure
dip underneath the apex. Positive h2 could be caused by
slight inward avalanches of material as the base is lowered.
Its decrease at higher densities might indicate a diminished

TABLE I. Results of the fits of the experimental data points,
and the corresponding physical parameters.

Density IFE Janssen OSL

r � 1.51 g�cm3 E � 5.96 E � 2.11 E � 0.89
�r�rb � 0.58� M` � 61.9 g h1 � 0.55

K � 0.65 h2 � 1.03
r � 1.53 g�cm3 E � 8.55 E � 2.28 E � 0.94
�r�rb � 0.59� M` � 55.3 g h1 � 0.64

K � 0.74 h2 � 0.97
r � 1.56 g�cm3 E � 10.1 E � 2.28 E � 1.02
�r�rb � 0.60� M` � 52.3 g h1 � 0.71

K � 0.80 h2 � 0.85
r � 1.59 g�cm3 E � 12.4 E � 2.30 E � 1.08
�r�rb � 0.61� M` � 48.5 g h1 � 0.87

K � 0.87 h2 � 0.49
susceptibility to this effect; alternatively the tapping proce-
dure could progressively erase a local asymmetry induced
by the initial fill.

We now turn to the key results of this paper, for the
response to an overload Q placed on top of the granular
column. (This is a solid piston, just narrower than the
cylinder.) This is taken into account within the OSL model
by modifying the boundary conditions to include a uniform
downward stress at the top surface. Such a load is found to
be compatible. From the linearity of the OSL model (also
true of Janssen’s model) we then have

Me � M`f0

µ
Mt

M`

∂
1 QfQ

µ
Mt

M`

∂
. (5)

In Janssen’s description, f0�x� � 1 2 e2x and fQ�x� �
e2x , so Me is monotonic in the poured mass Mt (and con-
stant when Q � M`). The result of the OSL model is
more surprising: f0�x� and fQ�x� have different x depen-
dences. Hence Me is not monotonic in Mt ; at intermedi-
ate Q there is an “overshoot” (Fig. 2). In addition, both
functions have a (slight) oscillatory character, caused by
“resonances”: these are standing-wave modes of the wave
equation, damped by “absorption” arising from wall fric-
tion (see [7] and [17]). In Fig. 2, we show the experimen-
tal results obtained for various overloads Q. As shown
in the inset, these results do indeed obey the linear rela-
tion, Eq. (5), to good accuracy. A clear overshoot effect is
also seen, although any further “resonant” oscillations are
small (even theoretically). Note that the OSL predictions
in Fig. 2 use the same parameters as determined previously
for Q � 0. Thus OSL, with no further fitting, gives a good
quantitative account of the data for all Q.

We have shown that simple hyperbolic models [7,8],
encoding the presence of linear force chains [4,5], can
be used to reproduce quantitatively the observed stress
response of cohesionless granular media, not only in piles
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[8], but in bins. The same is not true of the traditional
Janssen analysis. Nor is it true of IFE; this does predict
resonant behavior (at least in local stresses [20]), but our
results, even without overload, rule it out entirely as a
physical model. Any expectation of nonmonotonicity in
Fig. 2 based on IFE would thus have been misplaced.

What of other continuum modeling strategies? Much
recent work on bins and silos has studied elastoplastic
constitutive models (also widespread in soil mechanics),
often by a finite-element method. There are many such
models, and a recent comparative study found little con-
sensus among them [25]. But we wonder whether these
approaches can, with reasonably few fit parameters, re-
produce the results of Figs. 1 and 2. For example, the
observed linearity in Q (seen even for Q�M` � 1) may
set a challenge, although one finds numerically that, after
summing stresses over the base, the (nonlinear) IFE model
obeys to a good precision the linear relation (5). Linear-
ity is, of course, also recovered if the material is entirely
Hookean. The challenge is then to explain within a purely
elastic theory the nonmonotonic (if not oscillatory) curves
of Fig. 2. The investigation of these important questions is
underway [26].

Finally, it is important to map out more clearly the
domain of validity of the hyperbolic approach (see, e.g.,
[19]). In particular, our granular columns are tiny: only
20 grains or so across. These data clearly do not rule out
a crossover to more conventional elastic or elastoplastic
behavior at larger scales (e.g., where the grains start to de-
form) [4,5], although the hyperbolic approach also works
well in conical piles up to 1 m wide [12]. Careful over-
load experiments on larger bins could be very valuable,
as well as local stress measurements, which would reveal
more clearly the oscillatory nature of the response.
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