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Superconductivity from Flat Dispersion Designed in Doped Mott Insulators
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Routes to enhance superconducting instability are explored for doped Mott insulators. With the
help of insight for criticalities of metal-insulator transitions, geometrical design of lattice structure is
proposed to control the instability. A guideline is to explicitly make flat band dispersions near the Fermi
level without suppressing two-particle channels. In a one-dimensional model, numerical studies show
that our prescription with finite-ranged hoppings realizes large enhancement of spin-gap and pairing
dominant regions. We also propose several multiband systems, where the pairing is driven by intersite
Coulomb repulsion.

PACS numbers: 74.20.Mn, 71.10.Li, 71.10.Fd, 71.27.+a
Basic properties of doped Mott insulators have been
the subject of recent continued studies [1]. One of the
goals of the studies is to find ways to design instabilities
such as magnetism and superconductivity by controlling
material parameters in a realizable way. It is desired to
control the instabilities by utilizing the inherent character
of the doped Mott insulators and the critical nature of
metal-to-Mott insulator transitions. In this Letter, possible
prescriptions to control the instabilities are proposed.

For single-band Hubbard and t-J models on a square
lattice, simple scaling properties have been observed
numerically near the transition from metals to Mott insula-
tors [1–3], implying nontrivial and singularly momentum-
dependent correlation effects, where single-particle
excitations around some particular points as �p, 0� and
�0, p� in the momentum space play crucial roles with the
emergence of a flat dispersion [4]. This criticality extends
to a 20%–30% doping range while it appears only below
some fraction of the scale of the exchange interaction J .
The flat dispersion was also numerically observed in the
2D Hubbard model in earlier works by Dagotto et al. [5],
Bulut et al. [6], and Preuss et al. [7] in comparison to
universally observed flat dispersions in angle-resolved
photoemission data of the high-Tc cuprates [8,9]. Al-
though the observed flat dispersion certainly results from
a strong correlation effect with strong damping [3,5–7],
the microscopic mechanism for the flat dispersion still
waits for more complete understanding. Furthermore, its
persistence in multiband or more complex systems has
not been well studied.

In this Letter we discuss that promotion of the above
scaling behavior by tuning the flat dispersion offers a way
to control potential instabilities. We show that, even when
a flat band dispersion is designed near the Fermi level by
controlling lattice geometry and parameters, it enlarges the
critical region under the suppression of single-particle co-
herence in the proximity of the Mott insulator mentioned
above, thereby enhancing the instability. One might argue
that if a flattened dispersion is designed, it simply makes
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the correlation effects relatively larger only through the
change in the ratio to the effective bandwidth with the en-
hanced density of states. This is, however, not the whole
story on the verge of itinerant and correlation-induced lo-
calized states. The metallic excitations are determined
from the coherent one near the Fermi level, while the two-
particle processes including the superexchange interaction
J are rather determined mainly from a local, incoher-
ent origin in the real space when the electron correla-
tion is strong. It opens a possibility of enhancing the
two-particle instability by suppressing the dispersion only
near the Fermi level simultaneously keeping the ampli-
tude of the two-particle processes large. By the suppres-
sion of only the single-particle coherence, two-particle
processes work selectively and effectively since compe-
tition processes such as pair breakings and damping by
the single-particle channel are suppressed. We find no
particular dependence on dimensionality for this mecha-
nism. This is, however, not possible in single-band mod-
els with nearest-neighbor hopping because the two-particle
processes are not independent of the band dispersion
near the Fermi level. We discuss below how the inde-
pendent control can be made in more complex systems.

The flattened dispersion makes degenerate excitations
and may cause various instabilities. In this context, we
note that ferromagnetic instabilities by the flat band have
been extensively studied [10–12]. However, we consider
here only the cases with the singlet ground state at half
filling, where the ferromagnetic instability is suppressed.

In 1D t-J models, the phase diagram in the parameter
space of J�t and electron concentration n show a general
tendency of stronger pairing instability, namely, the larger
Tomonaga-Luttinger exponent Kr with spin gapped exci-
tation for larger J�t, though the phase separation interrupts
the enhancement [13–15]. Note that the pairing correla-
tion is the most dominant if Kr . 1. The general tendency
for enhanced pairing instability for large J�t also holds in
2D [16]. These are consistent with the mechanism we dis-
cussed above. We define the ordinary t-J model with the
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three-site terms:
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creates (annihilates) electrons with the constraint to ex-
clude the double occupancy. If the band dispersion is sup-
pressed only near the Fermi level, the effective transfer
decreases while J can be retained, mediated by the in-
coherent but dispersive part. This is indeed possible by
introducing longer-ranged transfer. We introduce the 1D
model with the third, fifth, and seventh neighbor trans-
fers, t3, t5, and t7, respectively and, for the exchange part,
Ji � J�ti�t�2 accordingly, in addition to t and J [17]. We
design flat noninteracting dispersion e�q� by optimizing
t3, t5, and t7 to make terms up to the sixth order van-
ish in the wave number q around q � 6p�2, the Fermi
level at half filling. The spin-gap boundary and the expo-
nent Kr �

p
pDn2k�4 were calculated by exact diago-

nalization of the Hamiltonian up to 16 sites, where the
Drude weight D and the compressibility k were calcu-
lated at filling n following the procedure in the literature
[13–15]. For the spin gap boundary, we used the level
crossing method for accurate estimates [15]. The results
have practically no system size dependence implying a re-
liable estimate of the thermodynamic results. They show
remarkable enhancement of both the pairing correlations
and spin-gap region as in Fig. 1, where the phase separa-
tion is absent. It shows the mechanism we proposed is

FIG. 1. Phase boundary of the spin-gap region (circles) and
the contour lines (with squares) for the Tomonaga-Luttinger
exponent Kr � 1. The case for the t-J model with the three-
site term (open symbols) and that of the same model but with
optimized dispersions by t3 � 0.6, t5 � 0.2, and t7 � 1�35
and resultant J3, J5, and J7, where Ji � Jt2

i (filled symbols).
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indeed effective. We have also examined other types of
band modifications and confirmed that the above mecha-
nism mainly determines the enhancements [17]. We have
found that the corresponding Hubbard-type model with the
same distant-ranged transfers also show a similar enhance-
ment. However, the system sizes we could study are not
large enough for reliable estimates of the thermodynamic
limit. We note that the enhancement of pairing was also
reported in the ladder model [18–20], when the Fermi level
lies near the top (bottom) of bands, where a flattening is
present. Our finding suggests one prescription, namely,
looking for a tuned flatter dispersion arranged only near
the Fermi level of the doped Mott insulator in quasi-one-
dimensional conductors. Since the mechanism itself is not
confined to quasi-one dimensionality, it opens various pos-
sibilities with rich physics along this line.

Next, we analyze several multiband models with non-
trivial band-flattening effects to get further insight into
this issue and to provide hints for material synthesis. We
introduce an extended Hubbard model,
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where c
y
is �cis� represent the creation (annihilation) op-

erator of an electron at site i with spin s. The lattices are
defined below in Figs. 2–4 where t connects bonds with
solid lines and t0 connects broken bonds.

The first example belongs to a category of one-quarter
depleted square lattice. Our model is described by the
Hamiltonian (2) with the lattice structure illustrated in
Fig. 2(a). When t0 � 0, it reduces to a lattice considered
by Lieb [10] if isolated spins on a quarter of lattice points
are depleted. It has ferromagnetic ground state at half
filling as Lieb proved. For t0 fi 0, however, the ground
state becomes singlet at half filling due to the Lieb-
Mattis theorem [21]. For smaller t0�t, the noninteracting
dispersion shows flattening in the middle two bands
among four in total. The two flattened dispersions are

given by E � 6
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FIG. 2. (a) The first model with regular 1�4 depleted struc-
ture. (b) The second model with alternating 1�4 depleted
structure.
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FIG. 3. The third model, ladder structure with diagonal
transfer.

with J � �y2 1 w2 2 u2� cos�kx 2 ky� 2 2u2�coskx 1

cosky� 2 3u2 2 y2 2 w2, G � w2u2�coskx 2 cosky�2,
w � 2tt0�

p
t2 1 t02, u �

p
t2 1 t02, y � �t2 2 t02��p

t2 1 t02. In the limit of t0 ! 0, these two bands be-
come completely flat. However flat the band becomes
with small t0�t, the superexchange interaction on the solid
bonds in Fig. 2(a) is unchanged. This lattice structure
may favor triplet pairing instability near t0 � 0 in con-
trast to the cases below, due to spin polarization of the
flat nonbonding band.

The second model has a slightly different lattice from
the case above as illustrated in Fig. 2(b). In this bipartite
structure, the number of connected A and B sublattice
points is equal, even at t0 � 0, after removing isolated
spins, where the ground state is singlet at half filling and
the Mott insulating state with the antiferromagnetic order
is expected in the thermodynamic limit. The flattening
of the band is not complete in this case but still has an
extended region of flat plateau.

The third example is illustrated in Fig. 3. The nonin-
teracting bands consist of a dispersive bonding and com-
pletely flat antibonding bands. Under electron doping,
carriers go into the flat band. Because of a strong frustra-
tion in contrast to the other cases, the magnetic correlation
may be suppressed.

For the fourth system, the lattice structure is illustrated
in Fig. 4. The square lattice structure in Fig. 4 is not
important and the following argument applies to any
other bipartite lattices if the three-site unit cell has the
same structure. The band structure consists of antibond-
ing, nonbonding, and bonding bands from high to low
energies given by ´a � 2tC1 1

p
�tC1�2 1 2t02,

´n � 0, ´b � 2tC1 2
p

�tC1�2 1 2t02, respec-
tively, with C1 � coskx 1 cosky and an energy gap
Dg � 22t 1

p
4t2 1 2t02. The noninteracting ground

state at half filling is given by filled bonding and half-
filled nonbonding bands.

FIG. 4. The fourth model, decorated square lattice.
Below we discuss a general aspect of interaction effects
more or less valid in all the above cases although we first
take the fourth system as an example. For nonzero U, the
flat band splits into upper and lower Hubbard bands. At
half filling, the lower Hubbard band of this nonbonding
band is filled, leading to the Mott insulator. Each cell is
occupied by precisely one electron in the nonbonding or-
bital and an exchange interaction between these nonbond-
ing electrons in the higher order in U may stabilize the
antiferromagnetic order. In the perturbation expansion
in U, we have mixing of antibonding components into
the filled bonding band. However, in the perturbation,
the number of nonbonding electrons at each cell can be
changed only by two so that in all the cells precisely one
nonbonding electron is kept up to the infinite order in U.
Even away from half filling, when we once assign configu-
ration for singly occupied and empty sites for nonbonding
orbitals, they do not have dynamics, where macroscopic
degeneracy remains. If the perturbation in U converges,
the system remains insulating up to the doping concentra-
tion d � 1�3. Intracell but intersite interaction plays a
similar role to U.

An important process in killing the insulating state
arises from the intercell Coulomb repulsion Vji2jj �i fi j�
between the ith and jth cells. For simplicity, we take V
between the same sublattice points 1, 2, or 3 in Fig. 4.
Other combinations play a similar role. Away from half
filling, there appear empty and doubly occupied cells in
the nonbonding orbitals. In the first order perturbation in
Vji2jj, a pair of electrons (holes) on the singly occupied
nonbonding orbitals at sites i and j each is excited to the
itinerant antibonding (bonding) band, where the excitation
energy is roughly 2Dg. In the second order in V , a pair
hopping from i, j cells to l,m cells occurs if l and m cells
have initially no nonbonding electrons. Here we show the
perturbation expansion up to the second order for the third
model (Fig. 3):
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where a
y
2,i,s creates a flat band electron at site i with

spin s. Similar effective Hamiltonians are derived for
the other models.

From the second order process, the localized nonbond-
ing electrons melt. It also induces superexchange-type
magnetic interaction from the charge diagonal part. When
V has some extended range, the superconducting order
with the pairing form factor with this range may occur.
The longer-ranged Coulomb interaction helps to inactivate
the first order process in V . If Vji2jj does not depend on the
combination �i, j�, the first order process just gives a con-
stant independently of the electron configuration. If Vji2jj
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is given by a screened form 	�exp�2rij�R��rij�V0 with
the range R, the second order process generates averaged
kinetic energy in the order �V 2

0 �Dg�d2�R�a�2�t�Dg�2 in
2D where a is the lattice constant. The average Coulomb
repulsion energy generated from the first order process is
roughly V0�d1�d in d dimensions. Then the pairing in-
teraction in the second order dominates for larger R. By
a rough estimate inferred from the melting transition of
the Wigner crystal [22], the dominance may well be re-
alized for R�a * 3 at d 	 0.1 and V0�Dg 	 Dg�t & 1.
If this condition is not well satisfied, the charge ordering
may compete with the superconductivity. A related multi-
band pairing mechanism was pointed out before [18,23],
where the pair transfer through U drives the s-wave super-
conductivity. Although several other proposals for pair-
ing in multiband models with V have been made [24,25],
they are rather different from ours in the sense that our
mechanisms come from (interband) pair transfers from flat-
tened band near the Fermi level to dispersive channel.
An artificial but helpful limit to understand the instabil-
ity in our mechanism is the case of infinite-range transfer
with the uniform amplitude t�

p
N for system size N . In

this case, the mean field solution with the order parameter
D �

P
k f�k�cksc2ks0 with f�k� �

P
ij Vji2jjeikji2jj�N

becomes the correct description of the superconducting
ground state, where the Hamiltonian has the form H �
2

1
N DyD

t2

t0 3 .
It is tempting to say that the above designed flattening

seems to be an extreme limit of the high-Tc cuprates.
In our models, the flat dispersion is separated from
the dispersive bands. The high-Tc cuprates seem to be
more similar to the fourth model at large U, where the
dispersive (anti)bonding and the flat nonbonding bands
coexist at the Fermi level.

It would be desired to seek materials which follow
the prescription presented here. For the first and second
systems, regular 1�4 depletion of square lattice or substi-
tution (for example, one-quarter of Cu ions with nonmag-
netic ions on the CuO2 lattice) may satisfy the requirement.
It is interesting that this structure has some similarity to
the charge ordered (or stripe) phase suggested in La-based
high-Tc cuprates [26]. This connection provides a new
view on the stripe problem [27]. The fourth model may
be realized by three-layered structure with top and bottom
layers designed to remove ligand atoms such as oxygen or
substituted with different ligand atoms to suppress transfer
through them in those planes.

One might argue that, with flat dispersions, impurity
or phonon effects were serious in real materials. How-
ever, when the coherent single-particle excitations are
suppressed, the localization effect is rather determined
under the competition to the two-particle process. The
localization effect is reduced if the two-particle hopping
process is retained larger. Anyhow impurity and phonon
effects near the Mott insulator in the present situation are
important open problems left for future studies.
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Our proposal to enhance the pairing instability is sum-
marized: Design flat bands near the Mott insulator by re-
taining the preferred two-particle process. Because of the
enhanced degeneracy and the suppression of the single-
particle process, the doped system gets stronger instability
in the two-particle process. We have numerically shown
that this mechanism and prescription work in an example
of 1D models with longer-ranged transfers. We have
proposed several multiband lattices, where the intersite
Coulomb repulsion generates such two-particle processes
through interband pair hoppings. Because the coherent
single-particle process is absent, small intersite interac-
tion immediately corresponds to the strong coupling limit
of the pairing where the Fermi liquid state does not exist.
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