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Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons
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Two light pulses propagating with slow group velocities in a coherently prepared atomic gas exhibit
dissipation-free nonlinear coupling of an unprecedented strength. This enables a single-photon pulse to
coherently control or manipulate the quantum state of the other. Processes of this kind result in generation
of entangled states of radiation field and open up new prospectives for quantum information processing.

PACS numbers: 42.50.Dv, 03.67.–a, 42.65.–k
It has been known for more than 30 years that light fields
or photons can interact with each other in atomic media
much like massive particles do [1]. However, the strength
of the interaction of two single light quanta is typically
extremely weak. As a result, conventional nonlinear optics
is feasible only when powerful laser beams, containing a
large number of photons, interact in nonlinear materials.

This Letter describes a method that allows for two slow
light pulses [2–4] of tiny energies to interact in a resonant
ensemble of atoms. When electromagnetically induced
transparency (EIT) [5,6] is established for both of these
pulses, they will propagate with slow but equal group ve-
locities, and a very efficient nonlinear interaction between
them will take place [7]. This interaction can be main-
tained for a very long time without dissipation, resulting in
a new regime of quantum nonlinear optics. Specifically we
describe here a scheme in which a traveling light pulse with
an energy corresponding to that of a “single photon” (h̄n)
can modify the refractive index of a second traveling pulse
such that the latter experiences a nonlinear phase shift on
the order of p . This process allows one to create strongly
correlated (i.e., entangled) states [5] of interacting photons
and to generate macroscopic quantum superpositions such
as Schrödinger cat states [8]. The technique described here
opens up interesting prospects for coherent processing of
quantum information [9–11] in applications such as quan-
tum computation and quantum communication [12].

It has been widely accepted that the use of ultrahigh
finesse microcavities is essential for having strong in-
teractions between single optical photons [13–15]. In
the present contribution a radically different approach is
taken, in that the properties of an optical material are
“designed” to achieve an unprecedented strength of non-
linearity without the need for a cavity. Earlier work has
already demonstrated that such a coherently controlled
dense atomic ensemble displays remarkable phenomena
[5,6], which are of great interest for nonlinear optics at
a low light level [16–19].

We consider a process in which a pair of very weak opti-
cal fields E1, E2 interact resonantly with an ensemble of N1
multistate atoms (species A) as depicted in Fig. 1. These
atoms are coherently driven by a classical (i.e., many-
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photon) light field with a Rabi frequency V1 tuned to
resonance with an atomic transition jc1� ! ja1�. We as-
sume that the frequency of one of the weak optical fields
(E1) is tuned to resonance with transition jb1� ! ja1�.
Quantum interference induced by the driving field results
in a sharp transmission resonance in the spectrum of the
weak field E1 (Fig. 2). The second weak field (E2) cou-
ples another optically allowed transition jc1� ! jd1� with
a single photon detuning D. When E2 is absent a prop-
erly tuned E1 propagates without loss or refraction, but its
group velocity is substantially reduced: this is the essence
of EIT. The off-resonant field E2 induces a Stark shift of
the state jc1� and therefore modifies the refractive index of
the first field. The resulting phenomenon corresponds to
cross-phase modulation of two weak light waves [7]: since

FIG. 1. Prototype composite atomic medium for strong nonlin-
ear interactions at the single-photon level. By adjusting detun-
ings such that the two weak fields E1, E2 and two classical fields
V1, V2, are in resonance with transitions in atoms A and B as
shown, resonant absorption can be eliminated and the group ve-
locities of two weak pulses can be made equal. The scheme can
be implemented, for example, using a natural mixture of atomic
rubidium. It consists of two isotopes Rb87 (natural abundance
�25%) and Rb85 (�75%) with transition frequencies differing
due to isotope shifts and nuclear spins. Propagation of tightly
focused beams over a long distance can be achieved using non-
diffracting beams of Bessel shape, fiber waveguides, or focusing
properties associated with EIT to induce waveguiding optically.
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FIG. 2. (a) Spectrum of transmission and refractive index
corresponding to EIT. Quantum interference in the atomic en-
semble induced by a coherent driving field creates a sharp reso-
nance in the transmission of a weak optical field, accompanied
by rapid variation of the refractive index. This rapid variation
causes a dramatic reduction of group velocity. The presence of
a second weak field causes an effective shift of the resonant
frequency (grey curve), which results in a corresponding change
of a refractive index and hence the phase of the first weak field.
(b) Propagation dynamics in coherent media: when resonant
pulses enter the medium, they exhibit spatial compression and
very soon slip behind the reference pulse (white) that does not
interact with the atoms. The total time that two slow pulses can
spend in the medium is limited by the residual single photon
loss, and by the spreading of the pulses after ts � V2T 2�gab .
The spreading is due to a finite bandwidth Dvmax of the EIT
resonance.

the dispersion of refractive index is very steep (Fig. 2),
small Stark shifts result in a large index change.

The key idea of the present work is to arrange the con-
ditions such that the two weak light pulses can interact in
transparent, nonlinear media for a very long time. This
is the case when pulses propagate with equal, slow group
velocities. Photon interaction will then cause large non-
linear phase shifts even if pulses of ultrasmall energies are
involved. A possible technique to achieve equal group ve-
locities for two weak pulses is explained in Fig. 1: here N2
L-type atoms of a second kind (B) are added to the inter-
action region, and the frequency of the field E2 is chosen
to be on resonance with the optical transition jb2� ! ja2�.
Application of a second driving classical field V2 of ap-
propriate intensity will result in induced transparency and
properly reduced group velocity for the field E2. The
mixture of atoms required to achieve such group veloc-
ity matching can be designed by using different isotopes
of alkali atoms, and by applying an appropriate magnetic
field to create the desired level splittings.

We describe quantum radiation by multimode field op-
erators [5]: Ê1,2�z, t� �

p
2pc�L

P
k âk1,2�t�e2ikz , where

âki is the annihilation operator corresponding to the field
mode with wave vector k. L is the quantization length and
c is the speed of light in vacuum. In the present approach
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we choose to restrict the quantization to a continuum of
modes with wave vectors ranging from k0 2 Dv�2c to
k0 1 Dv�2c, which in turn gives equal space-time com-
mutation relations �Êi�z, t�, Ê1

j �z, t�� � Dvdij, that de-
pend explicitly on the bandwidth of the system Dv. This
bandwidth can be determined, e.g., by the detection pro-
cess. As we will discuss shortly, the spectral width of the
transparency window also gives a natural limitation on the
maximal bandwidth.

The dynamics of the atomic media is described by
Heisenberg equations for atomic polarizations and coher-
ences. The finite bandwidth of quantized fields allows
us to apply adiabatic elimination of the atomic degrees
of freedom. By disregarding time derivatives of third
and higher order, we arrive at the following evolution
equations for the field operators:

µ
≠

≠z
1

1
yg

≠

≠t

∂
Ê1 � 2kÊ1 1 b

≠2

≠t2 Ê1

1 ihÊ1
2 Ê2Ê1 1 F̂1 , (1)

µ
≠

≠z
1

1
yg

≠

≠t

∂
Ê2 � 2kÊ2 1 b

≠2

≠t2 Ê2

1 ihÊ1
1 Ê1Ê2 1 F̂2 . (2)

The adiabatic expansion procedure used in the derivation
of Eqs. (1) and (2) is analogous to that of Refs. [16,18] for
classical fields. Here, yg � c��1 1 ng� is the group ve-
locity for the corresponding pulse, ng � g2N�jVj2, and k

being the rate of residual single-photon loss k � nggbc�c.
F̂1 and F̂2 are delta-correlated noise operators associated
with dissipation. h � �ngg2��igcd 1 D��l��2pc2� is
the rate of nonlinear interaction between pulses and
b � nggab��jVj2c�. g �

p
gabsc��2Al� is a normal-

ized atom-field coupling constant, A is the cross-sectional
area of the quantized fields, s is the resonant absorption
cross section, and l is the length of the interaction region.
gij are linewidths of ji� ! j j� atomic transitions. We as-
sumed that all interacting atoms have identical linewidths
and coupling constants and that the number of atoms is
equal (N1 � N2 � N). To obtain equal group velocities,
identical Rabi frequencies for the driving fields were
chosen (V1 � V2 � V).

Equations (1) and (2) together with the commutation re-
lation define a quantum field theory of interacting pulses
in a coherently prepared medium. In cases when losses
can be neglected this field theory is analogous to that of a
weakly interacting Bose gas, but with an imaginary effec-
tive mass term. This imaginary mass term results from the
finite bandwidth of the transparency window and causes a
spreading of the input pulses (Fig. 2).

We first consider the classical limit of this theory by re-
placing operators Ê1,2 with their expectation values E1,2.
In the ideal case D can be chosen to be large and hence h

is purely real. When attenuation and pulse spreading are
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small enough to be neglected, Eqs. (1) and (2) can be eas-
ily solved by E1,2�z, t� � E1,2�0, t0� exp�ihjE2,1�0, t0�j2z�,
which corresponds to cross-phase modulation of the weak
beams. Note that this result is expressed in terms of re-
tarded time t0 � t 2 z�yg. Magnitude of the nonlinear
phase shift at the peak of the pulse can be expressed in
terms of energy E and duration T of a Gaussian pulse:

phase shift �

s
ln�2�
4p

gcd

D

s

A
E
h̄n

tg

T
. (3)

Here nonlinearity h is expressed in terms of group de-
lay tg � ngz�c. In the limit when yg ø c the latter
corresponds to the interaction time of the pulse with the
medium.

It is apparent that large phase shifts exceeding p at ener-
gies corresponding to a fraction of h̄n appear to be possible
when the interaction time exceeds the pulse duration of a
tightly focused (s � A) laser beam. Before proceeding it
is important to reexamine the assumptions resulting in this
striking conclusion.

First, we note that a stringent limitation imposed by the
difference of group velocities of interacting pulses [18] is
absent in our case since the interaction is designed such
that group velocities are equal. Second, even in the absence
of various absorption mechanisms, nonlinear phase shifts
are limited by the bandwidth of the transparency window
which decreases with propagation distance [20] Dvmax �
�bz�21�2. After a sufficiently long propagation this results
in spreading of the pulse (see Fig. 2). In order to avoid
losses due to spreading, tg�T should be smaller than

tgDvmax �

s
V2tg

gab
�

s
sN
2A

. (4)

The quantity under the radical sign corresponds to an op-
tical depth of the medium [20]. Hence it is essential to
operate in optically dense gas. Finally we note that the
interaction time (tg) is itself limited due to absorption
associated with decoherence of the “dark state” [6]; i.e.,
tg , g

21
bc must be satisfied. This implies that EIT reso-

nances should be strongly saturated, i.e., V2�gabgbc $

Ns�A ¿ 1, in order for nonlinear phase shifts to be large.
We now consider quantum dynamics of the nonlinear

interaction. When absorption is negligible and the band-
width d of the pulses satisfy d , Dv , Dvmax, quantum
Eqs. (1) and (2) can be solved by

Ê1,2�z, t� � Ê1,2�t0� exp�ihÊ1
2,1�t0�Ê2,1�t0�l� , (5)

where Êi�t� are Heisenberg operators describing the in-
put fields at z � 0. We first analyze the evolution of the
most “classical” of all possible input wave packets. These
are multimode coherent states [5] ja1, a2� �

Q
k,j ja

k
1 � 3

ja
j
2�, which are eigenstates of input operators Êi�t� with

eigenvalues (at z � 0) ai�t� �
p

2pc�L
P

k a
k
i eikct . Af-

ter propagation through the nonlinear dispersive medium,
the following expectation values of the fields can be mea-
sured:

�Ê1,2�z, t�� � a1,2�t0� exp

∑
�22 sin2�F�2�

1 i sin�F��
ja2,1�t0�j2

Dv

∏
, (6)

where quantum phase shift F �
�1��4p�s�Agcd�D�Dvtg. These solutions have the same
form as those obtained in Ref. [21] for single-mode fields
and generalize that earlier result to the multimode case
that is appropriate for the traveling-wave geometry.

Equation (6) reproduces the classical result only when
F ! 0; for sufficiently large interaction times the quan-
tum dynamics of wave packets deviates substantially from
the classical case. In particular, both phases and ampli-
tudes given by Eq. (6) exhibit periodic collapses and re-
vivals. The origin of this behavior can be understood
by noting that each component of input coherent states
ja

k
1 � jaj

2� is itself a coherent superposition of many Fock
components jnk

1m
j
2�. During nonlinear interaction each of

these components acquires a different phase change result-
ing, for sufficiently large F, in quantum dephasing of the
original coherent states. However, when F reaches mul-
tiples of 2p, all components “rephase” such that original
coherent state is reproduced. At intermediate values of
interaction times, rephasing to other macroscopic states
can occur. For example, when F � p the output state
of two fields can be verified to be jc� �

1
2 �ja1, a2� 1

j2a1, a2� 1 ja1, 2a2� 2 j2a1, 2a2��. This is an en-
tangled superposition of macroscopically distinguishable
states. Superpositions of this kind have no classical coun-
terpart and correspond to Schrödinger catlike states [8].

Consider now a different type of input quantum state
corresponding to multimode single-photon wave packets:
j1i� �

P
k jkâ

y
k,ij0� where Fourier amplitudes jk are

normalized such that
P

k jjkj
2 � 1. In free space these

single-photon states represent traveling waves initially
(t � 0) localized around z � 0. The dynamics of indi-
vidual wave packets is fully described by a single photon
“wave function” C̃i�t, z� � �0jÊi�t� j1i�. Correlations
of these wave packets emerging due to photon-photon
interaction are described, in turn, by correlation ampli-
tudes [5] C̃12�t1, z1; t2, z2� � �0jÊ1�t1, z1�Ê2�t2, z2� j1112�.
After propagation through the atomic cell the correlation
amplitude is given by

C̃12�t001 , z1; t002 , z2� � C̃1�0, t001 �C̃2�0, t002 �

3 	1 1 sinc�Dv�t001 2 t002 ��2�

3 �eiF 2 1�
 , (7)

where t00i � ti 2 l�yg 2 �zi 2 l��c. Equation (7) indi-
cates that the nonlinear interaction alters the mode struc-
ture of the pulse in addition to generating a phase shift
on existing components. This phenomenon is related to
the classical effect of pulse broadening due to cross-phase
1421
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modulation. It is important, however, that equal-time (“co-
incidence”) correlations �t001 2 t002 �Dv ø 1 indicate that a
pair of single photons acquire a phase shift F as a result of
the nonlinear interaction. The magnitude of F can easily
exceed p , when tgDvmax ¿ 1.

These large nonlinear phase shifts can be used to cre-
ate quantum entanglement. For example, if the photons
are initially in coherent superpositions of two states (for
example, the two polarization states j16�), and only one
of these states (j11�) is subject to the strong nonlinear in-
teraction, the resulting state cannot be factorized into a
product state of individual modes [22]. Operations of this
kind form the essence of quantum information process-
ing [10]. The example considered above indicates, how-
ever, that the present approach to quantum entanglement
differs conceptually from the techniques discussed pre-
viously. In particular, usual approaches to quantum pro-
cessing are based on systems whose Hilbert space can be
restricted to a two-dimensional subspace (qubit). In con-
trast, the present technique involves multimode, traveling
wave excitations where the two-dimensional Hilbert space
of the qubit (i.e., polarization) and the external degrees of
freedom of the photon field become coupled. It is interest-
ing to consider how various concepts of quantum informa-
tion theory can be applied in the context of our approach.

It is clear that the feasibility of quantum entangle-
ment depends upon the large delay-bandwidth products
Dvmaxtg corresponding to ultraslow pulses. In experi-
ments involving ultracold [2] and hot [20] atoms values
of this product on the order of a few tens have been
observed. Potentially, an increase by 2 to 3 orders of
magnitude is likely, which should allow for a high fidelity
of entanglement. We conclude by noting that exception-
ally large nonlinearities have already been measured in
various experiments [2,3,20]. In particular, an efficient
nonlinear phenomenon corresponding to p phase shift has
been observed with pulse energies corresponding to less
than 103 photons per atomic cross section [23].
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