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Rydberg Electron Interferometry
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A recent quantum mechanical study [W. Isaacs and M. A. Morrison, Phys. Rev. A 57, R9 (1998)] dis-
covered pronounced oscillations in cross sections for near-resonant energy transfer collisions of rare-gas
atoms with initially aligned Rydberg atoms. We analyze such collisions for 17dm ! 18pm0 transitions in
the Ca-He system semiclassically and show that the oscillations arise from a phase interference process
unique to Rydberg target states. In addition to explaining the origin of these structures, this analysis
explains their disappearance when the relative Ca-He velocity goes to infinity and/or the energy defect
vanishes and their dependence on the initial and final magnetic quantum numbers of the transition.

PACS numbers: 34.60.+z, 34.50.Pi
Recent experimental and theoretical investigations
discovered the unexpected presence of pronounced align-
ment effects in cross sections for near-resonant energy
transfer collisions of rare-gas atoms with Rydberg atoms.
In these studies, the initial state of the Rydberg electron
is aligned (e.g., via multiple pulsed-laser excitation) and
inelastic cross sections are analyzed for effects such as
a dependence on the angle between the polarization of
the exciting laser and the relative velocity of the rare-gas
projectile [1–3]. Such effects signal that the excited
electron “remembers” its initial alignment through the
collision. Studies of alignment phenomena have generated
great interest because of the detailed insight they provide
into fundamental mechanisms that influence the dynamics
and properties of colliding particles [4–6].

Nearly all previous investigations of alignment in near-
resonant energy transfer collisions have considered targets
in low-lying excited states, not Rydberg states. For such
targets, the qualitative explanation of alignment effects has
been predicted on the formation during the collision of
a transient quasimolecular electronic state. According to
these “orbital following” and “locking” models [4,7,8],
the orbital of the excited electron temporarily couples to
the internuclear axis of the quasimolecule. Consequently,
depending on the distance at which the orbital “locks”
and the symmetry of the resulting electronic state, cross
sections may exhibit alignment effects of varying degree.

Such models, however, are not germane to collisions
with Rydberg atoms, where the electron’s comparatively
low speed and extremely diffuse probability density
invalidate a molecular (Born-Oppenheimer) description of
the dynamics [9,10]. Hence cross sections for rare-gas
collisions with Rydberg atoms were not expected to
manifest alignment effects. Nevertheless, measurements
by Spain et al. [11] revealed unambiguous effects in cross
sections for the 17d ! 18p transition in Ca resulting
from collisions with ground-state Xe atoms at a single
mean relative velocity. Quantum calculations by Isaacs
and Morrison [12,13] confirmed these results and, by
exploring a wide range of relative velocities, uncovered
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hitherto unknown oscillatory structures in the cross
sections for this transition (see Fig. 1). The assumptions
of these calculations explicitly precluded the formation
of a quasimolecular state, so the origin of the alignment
effects, the oscillations, and their striking dependence on
the initial and final magnetic quantum numbers of the
electron all remained a mystery.

In the present Letter we use a semiclassical time-
dependent analysis [14–17] to uncover the physical
mechanism behind these structures. Specifically, we
interpret the oscillations as a type of quantum mechanical
interference heretofore unknown in Rydberg collisions.

The most straightforward way to study alignment effects
theoretically is to first calculate state-to-state cross sec-
tions for the transitions a � �n, �, m� ! a0 � �n0, �0, m0�
for all magnetic quantum numbers m and m0 allowed by
the orbital angular momentum quantum numbers � and
�0 of the excitation �n, �� ! �n0, �0�. One then sums the
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FIG. 1. State-to-state cross sections for 17dm ! 18pm0 transi-
tions in Ca-He collisions from quantal (solid curves) and semi-
classical (points) calculations: 0 ! 0 (closed circles), 1 ! 1
(open triangles), 2 ! 1 (open squares), 1 ! 0 (closed squares),
and 2 ! 0 (closed diamonds).
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resulting cross sections over final state m0 for each ini-
tial m. The extent to which each of the resulting partial
cross sections sjmj�y� depend on jmj at a particular relative
velocity y is a measure of the strength of the alignment
effect: if these quantities are independent of jmj, then
no such effects are present and the collision has obliter-
ated all information concerning the initial alignment of the
Rydberg electron [18].

We calculate state-to-state cross sections by solving the
time-dependent Schrödinger equation of the Rydberg elec-
tron in a semiclassical approximation in which the rare-gas
projectile is treated as a point particle moving along a
straight-line trajectory through the quantum mechanical
probability density of the Rydberg electron. (The lat-
ter assumption is based on the mass difference between
the projectile and the electron. Examination of differ-
ential cross sections from quantal calculations [12] show
this assumption to be extremely accurate for the system
considered here.) The singly charged core of the Ryd-
berg atom plays no direct role in the collision; this “spec-
tator” merely supports the initial and final bound states
of the electron. Hence in this widely used “quasi-free-
electron model,” [9,19,20] quasimolecular state formation
cannot occur; the transition results essentially from the col-
lision of a very weakly bound electron with the rare-gas
projectile.

The time-dependent interaction between these two par-
ticles is represented by the Fermi contact potential

V̂ �t� � 2pA

µ
h̄2

me

∂
d�r 2 R� , (1)

where A is the effective scattering length for collisions of
the rare-gas atom with the electron of mass me. This po-
tential is zero except when the atom’s position R coincides
with the Rydberg electron’s coordinate r, at which time the
electron may undergo a (high nonadiabatic) transition. The
Fermi potential does not include the Rydberg electron–
rare-gas polarization interaction; rather, it assumes that
the electron scattering amplitude for this very-low-energy
collision may be approximated by [21] f�e� � 2A. Po-
larization effects do influence the magnitude (though not
the structure) of Ca-Xe cross sections, so we here con-
sider Ca-He scattering—for which neglect of polarization
is an excellent approximation in the relevant energy range.
Quantal calculations show that Ca-He cross sections mani-
fest effects comparable in magnitude and structure to those
in Ca-Xe scattering [12].

Considering a two-state model, we write the wave func-
tion of the Rydberg electron in terms of time-dependent
transition amplitudes aa�t� as

C�r, t� � aa�t�e2iEa t� h̄ca�r� 1 aa0�t�e2iEa0 t� h̄ca0�r� .

(2)

We represent the stationary-state eigenfunctions ca�r� of
the Rydberg electron by products of phase-shifted hydro-
genic radial functions and spherical harmonics. The for-
1416
mer are shifted [22] by the quantum defects of the relevant
states (for Ca, d17d � 0.9043 and d18p � 1.8721). The
corresponding energies, which in atomic units are given
by en� � 21��2�n 2 dn��2�, are 428.56 cm21 for the 17d
state and 421.89 cm21 for 18p, giving an energy defect
De � Ea0 2 Ea of 1.69 cm21. Initially, the electron is in
state a, so aa�t ! 2`� � 1 and aa0�t ! 2`� � 0.

For the wave function (2), the final-state transition am-
plitude is

aa0�t� � 2
i
h̄

Z t

2`
aa�t0�eiDet0� h̄�a0jV̂ �t0� ja	 dt0. (3)

The Fermi potential reduces the transition matrix element
�a0jV̂ �t0� ja	 to a number proportional to the transition
density Pa0,a�r� � c

�
a0�r�ca�r� evaluated at r � R�t0�.

To first order, the transition amplitude becomes

aa0�t� � 2i�2pA�
µ

h̄
me

∂ Z t

2`
eiDet0� h̄Pa0,a���R�t0���� dt0.

(4)

The squared modulus of this quantity in the t ! 1` limit
is the first-order transition probability Pa!a0 .

In a reference frame fixed on the spectator core with z
axis parallel to the rare-gas velocity v , the trajectory of the
projectile can be written in terms of impact parameter b
and unit vectors ex and ez as R�t� � bex 1 ytez , where
we have exploited the axial symmetry of the system to
set w � 0. Using cylindrical coordinates �b, w, z�t��, the
transition probability can be expressed as an integral over
z � yt as

Pa!a0�y; b� �

µ
2pAh̄

me

∂2 1
y2

Z `

2`

Z `

2`
eiDe�z2z0��� h̄y�

3 Pa0,a�z, b�Pa0,a�z0, b� dz dz0, (5)

where we have used the fact that Pa0,a � Pa,a0 is real and
independent of the azimuthal angle w. The sine functions
in the phase of the integrand average to zero upon integra-
tion over z and z0, leaving

Pa!a0�y; b� �

µ
2pAh̄

me

∂2 1
y2

Z `

2`

Z `

2`
cos

∑
De

h̄y
�z 2 z0�

∏

3 Pa0,a�z, b�Pa0,a�z0, b� dz dz0. (6)

The state-to-state cross section accumulates transition
probability over all impact parameters,

sa!a0�y� � 2p
Z `

0
Pa!a0�y; b�b db . (7)

Figure 1 shows these cross sections for several m ! m0

combinations. The 0 ! 0 results manifest the most pro-
nounced oscillations, while s2!1 varies smoothly with
y. The close agreement between quantal and semiclassi-
cal data validates the semiclassical picture underlying the
present analysis. In this picture Eq. (6) explains the os-
cillations as phase interference phenomena resulting from
the spatial distribution of Rydberg electron wave func-
tions. The initial and final radial functions associate cer-
tain regions of space with electron probabilities that are
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higher than those in adjacent regions. As modulated by
angular factors in the transition density Pa0,a�z, b�, these
high-probability regions demarcate space in ways that de-
pend strikingly on m and m0. To illustrate, Fig. 2 shows
transition densities for the two extreme cases, the transi-
tions m � 0 ! m0 � 0 and 2 ! 1. Because the radial de-
pendencies of these densities are identical, they differ only
in the angular factors, which, in turn, depend on m and
m0. If a rare gas atom with impact parameter b encounters
regions at z and z0 at both of which the transition densi-
ties are comparatively large, this encounter will contribute
significantly to the transition probability (6). In effect, the
factors Pa0,a�z, b� and Pa0,a�z0, b� at these values of z and
z0 represent two “opportunities” or “paths” whereby the
Rydberg electron can be excited to state a0. As y varies,
the cosine factor in (6) induces interference oscillations be-
tween the two highly nonadiabatic interactions at z and z0.
This interference disappears as De ! 0 or y ! `, and
otherwise produces peaks spaced as y21 —all properties
observed in the cross sections in Fig. 1. While integration
over impact parameter in Eq. (7) smooths these features,
it does not alter the qualitative predictions of Eq. (6).

To clarify the origin of the oscillations, we consider the
extreme model of a Rydberg state in which the electron
presents to the rare gas atom only two “planes” of transi-
tion density, one at z1 and one at z2, i.e.,

Pa0,a���R�t���� � c�
a0���R�t����c�

a���R�t����

3 
d�z�t� 2 z1� 1 d�z�t� 2 z2�� . (8)

Since in this model transitions can occur at either interac-
tion time t1 or t2 such that z�t1� � z1 and z�t2� � z2, the
transition probability (5) reduces to
FIG. 2. Density plots of transition densities for the 0 ! 0 (up-
per) and 2 ! 1 (lower) state-to-state 17dm ! 18pm0 transitions
in Ca-He collisions. Light regions correspond to large values,
dark to small values.
Pa!a0�y; b� �

µ
2pAh̄

me

∂2 1
y2

Ω
P 2

a0,a�b, z1� 1 P 2
a0,a�b, z2� 1 2 cos

∑
De

h̄y
�z2 2 z1�

∏
Pa0,a�z1, b�Pa0,a�z2, b�

æ
. (9)
All three appearances of the transition density in this
result participate in the m and m0 dependence of the
resulting cross sections. Extensive tests (not shown)
demonstrated that, provided z1 and z2 are far enough
apart �Dz * 150a0�, their particular values do not matter.
For 0 ! 0 one can easily find planes which induce
oscillations in s0!0, while for 2 ! 1 there are no planes
which cause structure in s2!1. The variations in Fig. 1
with y and with m and m0 of cross sections determined
from the actual transition densities of Fig. 2 reflect the
more distributed nature of these densities as compared
with this two-plane model.

Unlike the quantal impulse formulation of Ref. [13],
the present semiclassical theory clearly reveals that oscil-
latory alignment effects in near-resonant energy transfer
collisions of rare-gas atoms with aligned Rydberg atoms
originate in quintessentially quantum mechanical interfer-
ence—specifically, between multiple “paths” by which the
projectile may induce a transition in the Rydberg electron.
This analysis further suggests that angular momentum
phase interference may also play a role in collisions involv-
ing aligned low-lying excited target states—as seen, for
example, in measured and calculated results for the pro-
cess [23] Ca���4s4f 1F� 1 He ! Ca���4p2 1S� 1 He.
Partial cross sections for this transition show structures
quite similar to those in Fig. 1: s0 manifest pronounced
oscillations, those in s1 are weaker, and s2 and s3 vary
smoothly with y. This behavior may arise from simple
angular momentum considerations rather than the more
complicated orbital locking mechanisms thus far pro-
posed. We hope the present findings will stimulate further
experimental and theoretical investigation of Rydberg
electron interference.
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