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Microscopic Calculation of the Inclusive Electron Scattering Structure Function in 16O
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We calculate the charge form factor and the longitudinal structure function for 16O and compare with
the available experimental data, up to a momentum transfer of 4 fm21. The ground-state correlations
are generated using the coupled-cluster [exp�S�] method, together with the realistic y18 NN interaction
and the Urbana IX three-nucleon interaction. Center-of-mass corrections are dealt with by adding a
center-of-mass Hamiltonian to the usual internal Hamiltonian, and by means of a many-body expansion
for the computation of the observables measured in the center-of-mass system.

PACS numbers: 24.10.Cn, 21.60.Gx, 25.30.–c, 27.20.+n
One of the fundamental problems in nuclear physics is
related to developing a complete understanding of how nu-
clear structure arises as a result of the underlying interac-
tion between nucleons. This in turn should help us develop
a complete understanding of the electromagnetic structure
of the nucleus, as revealed by the wealth of high-quality
data that electron scattering experiments have provided for
the past 30 years. The interplay of nuclear correlations,
meson-exchange current or charge densities, relativistic ef-
fects in nuclei, the importance of three or more many-body
interactions in relation with the dominant two-body inter-
action in nuclei awaits being assessed in greater detail.
Unfortunately, solutions of the many-body Schrödinger
equation with realistic interactions have proven very dif-
ficult to obtain. Only in recent years has progress been
made and first results of microscopic calculations relat-
ing to ground state and low-excited states for nuclei with
A # 7 been reported [1]. These calculations have been
obtained using the Green’s function Monte Carlo method,
but this approach, just like the Fadeev [2] or the corre-
lated hyperspherical harmonics [3] methods successfully
used for the A � 3, 4-body system, suffers limitations in
the number of nucleons they can treat. To date, only the
variational Monte Carlo method [4] has enjoyed success
in solving the many-body problem for medium nuclei, but
those results still show room for improvement.

We are using the exp�S� coupled-cluster expansion to
calculate the ground state of 16O. Our approach is very
similar to the standard approach, first developed by the
Bochum group [5], and has been outlined recently in [6].
The idea behind the coupled-cluster expansion formalism
relies on the ability of expanding the model nuclear wave
function in the many-body Hilbert space in terms of two
Abelian subalgebras of multiconfigurational creation and
their Hermitian-adjoint destruction operators. The expan-
sion coefficients carry then the interpretation of nuclear
correlations. The fact that we make no artificial separa-
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tion between “short-range” and “long-range” correlations
is one particular strength of this many-body method.

The derivation of the explicit equations is quite tedious,
but requires only standard techniques. For a closed-shell
nuclear system, the total Hamiltonian is given as

H �
X

i

Ti 1
X
i,j

Vij 1
X

i,j,k

V tni
ijk . (1)

The Hamiltonian includes a nonrelativistic one-body ki-
netic energy, a two-nucleon potential, and a supplemental
three-nucleon potential. We have chosen the Argonne y18
potential [7] as the most realistic nucleon-nucleon inter-
action available today. The Argonne y18 model provides
an accurate fit for both pp and nn scattering data up to
350 MeV with a x2�datum near one. The introduction of
charge-independence breaking in the strong force is the key
element for obtaining this high performance. However, the
two-body part of this interaction results in overbinding and
too large saturation density in nuclear matter. Therefore,
the NN potential is supplemented by a three-nucleon in-
teraction (part of the Urbana family [8]), which includes
a long-range two-pion exchange and a short-range phe-
nomenological component. The Urbana IX potential is
adjusted to reproduce the binding energy of 3H and give
reasonable saturation density in nuclear matter when used
with Argonne y18 [1].

We are searching for the correlated ground state of the
Hamiltonian H, which we denote by j0̃�. The ansatz for
the many-body wave function j0̃� is defined as the result of
the cluster correlation operator, Sy, acting on the reference
state of the many-body system, the uncorrelated ground
state j0�:

j0̃� � eSy

j0� .

For a number-conserving Fermi system, the standard
choice for j0� is the single-particle shell-model (Slater de-
terminant) state formed from an antisymmetrized product
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of single-particle wave functions. The cluster correlation
operator is defined in terms of its ph-creation operators ex-
pansion (Oy

0 � 1, Oy
1 � ay

p1
ah1 , Oy

2 � ay
p1

ay
p2

ah2ah1 ) as

Sy �
X̀
n�0

1
n!

SnOy
n .

The problem of solving for the many-body wave function
j0̃� and the ground-state energy E is now reduced to the
problem of solving for the amplitudes Sn. This implies
solving a set of nonlinear equations, which may be ob-
tained using a variational principle. We construct a varia-
tion dj0̃� orthogonal to the correlated ground state as

dj0̃� � e2SOy
n j0� ,

and require that the Hamiltonian between the ground state
and such a variation vanishes. As a result, we obtain
an equation for the ground-state energy eigenvalue E in
terms of the cluster correlation coefficients, �Sn�, and a
set of formally exact coupled nonlinear equations for these
coefficients:

E � �0̃jeSHe2Sj0̃� ,

0 � �0jeSHe2SOy
n j0� .

Then, the computation breaks down into two steps [6]: In
the first step, the G-matrix interaction is calculated inside
the nucleus including all of the corrections. This results in
amplitudes for the 2p2h correlations, which are implicitly
corrected for the presence of 3p3h and 4p4h correlations.
In the second step, the mean field is calculated from these
correlations and the single-particle Hamiltonian is solved
to give mean-field eigenfunctions and single-particle ener-
gies. These two steps are iterated until a stable solution
is obtained. Calculations are carried out entirely in con-
figuration space, where a 50h̄v space is used. The gen-
eral approach, when the Hamiltonian includes only up to
two-body operators, has been presented in [6,9]. The re-
sults we report here have been obtained by taking into ac-
count the three-nucleon interaction via a density-dependent
approach. The details of this approach will be presented
elsewhere [10].

Once the correlated ground state j0̃� is obtained, we can
calculate the expectation value of any arbitrary operator
A as

ā � �0jeSAe2SS̃yj0� ,

where S̃y is also defined by its decomposition in terms of
ph-creation operators

S̃y �
X
n

1
n!

S̃nOy
n .

The amplitudes S̃n are obtained in terms of the Sn ampli-
tudes in an iterative fashion.

Note that the correlated ground state j0̃� is not transla-
tionally invariant since it depends on the 3A coordinates of
the nucleons in the laboratory frame. Therefore, in prac-
tice, one has to take special care in correcting for the ef-
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fects of the center-of-mass motion. This is done in several
steps: First, the Hamiltonian (1) is replaced by the inter-
nal Hamiltonian

Hint � H 2 Tc.m. ,

which is now entirely written in the center-of-mass frame
by removing the center-of-mass kinetic energy, Tc.m. �
P2

c.m.��2mA�, with m the nucleon mass. Both the two- and
three-nucleon interactions are given in terms of the relative
distances between nucleons, so in this respect no correc-
tions are needed. Second, a many-body expansion has been
devised [11] in order to carry out the necessary corrections
required by the calculation of observables, which are mea-
sured experimentally in the center-of-mass frame. This
procedure is based on the assumption that we can neglect
the correlations between the center-of-mass and relative
coordinates degrees of freedom, and a factorization of the
correlated ground state j0̃� into components which depend
only on the center-of-mass and the relative coordinates,
respectively, is possible. We also assume that, indeed, the
correlated ground state j0̃� provides a good description of
the internal structure of the nucleus. Finally, in order to
ensure such a separation, a supplemental center-of-mass
Hamiltonian is added:

Hc.m. � bc.m.

∑
Tc.m. 1

1
2

�mA�V2R2
c.m.

∏
,

which has the role of constraining the center-of-mass com-
ponent of the ground-state wave function [12]. We choose
the values of the parameters bc.m. and V2 such that they
correspond to a value domain for which the binding energy

E � �H 0
int � Hint 1 Hc.m.� 2 �Hc.m.�

is relatively insensitive to the choice of the bc.m. and V2

values [10]. When leaving out the center-of-mass Ham-
iltonian, the calculated binding energy of 16O is equal to
7.54 MeV�nucleon, which is thought to be a reasonable
value, given the uncertainties related to the three-nucleon
interaction.

Figure 1 shows the theoretical result for the charge form
factor in 16O. In the one-body Born-approximation picture,
the charge form factor is given as

FL�q� � �0̃j
X
k

fk�q2�ei �q?�r 0
k j0̃� ,

with fk�q2� the Iachello-Jackson-Lande [13] nucleon
form factor, which takes into account the finite size of
the nucleon k. We also take into account the model-
independent part of the “Helsinki meson-exchange
model” [14], namely, the contributions from the p- and r-
exchange “seagull” diagrams, with the pion- and r-meson
propagators replaced by the Fourier transforms of the
isospin-dependent spin-spin and tensor components of the
y18 NN interaction. This substitution is required in order
for the exchange current operator to satisfy the continuity



VOLUME 84, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 14 FEBRUARY 2000
FIG. 1. Charge form factor for 16O, obtained in the DWBA
picture �y18 1 UIX 1 meson exchange�.

equation together with the interaction model. The contri-
butions of the p- and r-exchange charge density give a
measurable correction only for q . 2 fm21.

In order to generate the form factor depicted in Fig. 1,
we have first used the procedures of [11], keeping the
contributions that can be written in terms of the one- and
two-body densities. We then take the Fourier transform in
order to produce the theoretical charge density. Using this
theoretical charge density, we generate the charge form
factor in a distorted wave Born approximation (DWBA)
picture [15], in order to take into account the distortions
due to the interaction of the electron with the Coulomb
field. This last step results in smoothing out the sharp
diffraction minima usually seen in the calculated charge
form factor [4,11]. The agreement with the experiment is
reasonably good over the whole range of q spanned by the
available experimental data [16].

A second electron scattering observable that we would
like to compare with is the longitudinal structure function
SL�q�, sometimes called the Coulomb sum rule, which is
sensitive to the short-range correlations induced by the re-
pulsive core of the NN interaction [17,18]. The Coulomb
sum rule, SL�q�, represents the total integrated strength
of the longitudinal response function measured in inclu-
sive electron scattering. In the nonrelativistic limit [18],
we have

SL�q� � 1 1 rLL�q� 2
1
Z

j�0̃jr�q� j0̃�j2,

where r�q� is the nuclear charge operator

r�q� �
1
2

AX
i

ei �q?�ri �1 1 tz,i� ,

and rLL�q� is the longitudinal-longitudinal distribution
function

rLL�q� �
Z

d �r1

Z
d �r2 j0�qj�r1 2 �r2j�r� p,p���r1, �r2� .
Here r�p,p���r1, �r2� is the proton-proton two-body density

r�p,p���r1, �r2� �
1
4

X
i,j

�0̃jd��r1 2 �ri�d��r2 2 �rj�

3 �1 1 tz,i� �1 1 tz,j� j0̃� ,

normalized asZ
d �r1

Z
d �r2 r�p,p���r1, �r2� � Z 2 1 .

In light nuclei, reasonable agreement between theory
and experiment is obtained for the Coulomb sum rule [19].
In heavier nuclei, however, the experimental situation is a
lot more controversial, since both a certain lack of strength
has been reported and because of the inherent difficulty of
separating the longitudinal and transverse contributions in
the cross section due to the distortion effects of the electron
waves in the nuclear Coulomb field. Figure 2 shows the
calculated Coulomb sum in 16O. Since no experimental
data are available for 16O, we compare the results of the
present calculation with the 12C experimental data from
[20] with an estimate [21] for contributions from large v.
The large error bars on the experimental data are largely
due to systematic uncertainties associated with tail contri-
bution [22]. Preliminary theoretical results for 12C are also
shown and appear to follow closely the results for the theo-
retical curve for 16O.

The results presented here are obtained in a framework
which is directly comparable with accurate microscopic
calculations reported in the literature [4]. The nuclear-
current model was purposely chosen to be the same, such
that one can infer the relevance of the nuclear wave func-
tion model. As such, we present results of a purely non-
relativistical calculation, which seems to be acceptable
given the energy transfer of the experimental results we
are trying to reproduce (v � 374.5, 750.0 MeV). Cor-
rections such as the Darwin-Foldy and the “spin-orbit”

FIG. 2. Coulomb sum for 12C and 16O, compared with “ex-
perimental” 12C data which include theoretically determined
high-energy tail corrections.
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corrections for the one-body current have been shown to
have small effects on the charge form factor [14] for this
energy regime. The Coulomb sum SL�q� is consistent with
the charge form factor calculation, and does not include
any relativistic corrections either. In any event, the large
error bars for the experimental data at q . 2 fm21 are
very large compared with the small expected corrections
due to relativistic effects. However, relativistic corrections
are thought to be important at GeV energies, and may be-
come critical for the interpretation of Thomas Jefferson
National Accelerator Facility experiments. It has been re-
cently conjectured [23] that in the region of a few GeV the
bulk of the relativistic effects stems from the nuclear cur-
rent. Thus it would be interesting in the future to evalu-
ate the relativistic corrections due to the inclusion of the
full electromagnetic operator both at the one-body [23] and
two-body [24] level, and compare with results obtained us-
ing the traditional scheme, where approximations are made
for the transferred momentum and energy.

This calculation represents the most detailed calculation
available today, using the coupled-cluster expansion, for a
nuclear system with A . 8. This also represents a contri-
bution to the ongoing effort of carrying out microscopic
calculations which directly produce nuclear shell structure
from realistic nuclear interactions. Similar calculations for
other closed-shell nuclei in the p and sd shell are currently
under way.
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