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Typical Performance of Gallager-Type Error-Correcting Codes
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The performance of Gallager’s error-correcting code is investigated via methods of statistical physics.
In this approach, the transmitted codeword comprises products of the original message bits selected by
two randomly constructed sparse matrices; the number of nonzero row/column elements in these matrices
constitutes a family of codes. We show that Shannon’s channel capacity is saturated for many of the
codes while slightly lower performance is obtained for others which may be of higher practical rele-
vance. Decoding aspects are considered by employing the Thouless-Anderson-Palmer approach which
is identical to the commonly used belief-propagation-based decoding.

PACS numbers: 89.90.+n, 02.50.2r, 05.50.+q, 75.10.Hk
The ever increasing information transmission in the
modern world is based on communicating messages
reliably through noisy transmission channels; these can be
telephone lines, magnetic storing media, etc. Error-
correcting codes play an important role in correcting
errors incurred during transmission; this is carried out by
encoding the message prior to transmission and decoding
the corrupted received codeword for retrieving the origi-
nal message. In his groundbreaking papers, Shannon
[1] analyzed the capacity of communication channels,
setting an upper bound to the achievable noise-correction
capability of codes, given their code (or symbol) rate. The
latter represents the ratio between the number of bits in
the original message and in the transmitted codeword.

Shannon’s bound is nonconstructive and does not pro-
vide explicit rules for devising practical optimal codes.
The quest for more efficient codes, in the hope of satu-
rating the bound set by Shannon, has been going on ever
since, providing many useful but suboptimal codes.

One family of codes, presented originally by Gallager
[2], attracted significant interest recently as it has been
shown to outperform most currently used techniques [3].
In fact, irregular versions of Gallager-type codes have re-
cently been shown to get very close to saturating Shan-
non’s bound in the case of infinitely long messages [4].
Most studies of Gallager-type codes conducted so far have
been carried out via numerical simulations. Some analyti-
cal results have been obtained via methods of information
theory [3], setting bounds on the performance of certain
code types, and by combinatorical/statistical methods [4];
no quantitative results have been obtained for their typi-
cal performance. In this Letter we analyze the typical
performance of Gallager-type codes for several parame-
ter choices via methods of statistical mechanics. We then
validate the analytical solution by comparing the results to
those obtained by the Thouless-Anderson-Palmer (TAP)
approach to diluted systems and via numerical methods.

In a general scenario, the N-dimensional Boolean mes-
sage j is encoded to the M-dimensional vector J0 which
is then transmitted through a noisy channel with flipping
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probability p per bit (other noise types may also be consid-
ered but will not be examined here). The received message
J is decoded to retrieve the original message.

One can identify several slightly different versions of
Gallager-type codes. The one used in this Letter, termed
the MN code [3], is based on choosing two randomly se-
lected sparse matrices A and B of dimensionality M 3 N
and M 3 M, respectively; these are characterized by K
and L nonzero unit elements per row and C and L per
column, respectively. The finite, usually small, numbers
K , C, and L define a particular code; both matrices are
known to both sender and receiver. Encoding is carried
out by constructing the modulo 2 inverse of B and the ma-
trix B21A (modulo 2); the vector J0 � B21Aj (modulo 2,
j in a Boolean representation) constitutes the codeword.
Decoding is carried out by taking the product of the ma-
trix B and the received message J � J0 1 z (modulo 2),
corrupted by the Boolean noise vector z , which results in
Aj 1 Bz . The equation

Aj 1 Bz � AS 1 Bt �mod2� (1)
is solved via the iterative methods of belief propagation
(BP) [3] to obtain the most probable Boolean vectors S
and t ; BP methods in the context of error-correcting codes
have recently been shown to be identical to a TAP based
solution of a similar physical system [5].

The similarity between error-correcting codes of this
type and Ising spin systems was first pointed out by Sourlas
[6], who formulated the mapping of a simpler code, some-
what similar to the one presented here, onto an Ising spin
system Hamiltonian. We recently extended the work of
Sourlas, which focused on extensively connected systems,
to the finite connectivity case [5].

To facilitate the current investigation we first map the
problem to that of an Ising model with finite connectiv-
ity. We employ the binary representation �61� of the dy-
namical variables S and t and of the vectors J and J0

rather than the Boolean �0, 1� one; the vector J0 is gen-
erated by taking products of the relevant binary message
bits J0

�i1,i2···� � ji1ji2 · · · , where the indices i1, i2 · · · cor-
respond to the nonzero elements of B21A, producing a
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binary version of J0. As we use statistical mechanics tech-
niques, we consider the message and codeword dimension-
ality (N and M, respectively) to be infinite, keeping the
ratio between them R � N�M, which constitutes the code
rate, finite. Using the thermodynamic limit is quite natu-
ral as Gallager-type codes are usually used for transmitting
long (104 105) messages, where finite size corrections are
likely to be negligible. To explore the system’s capabilities
we examine the Hamiltonian

H �
X

�i1,...,iK ;j1,...,jL�
D�i1,...,iK ;j1,...,jL�

3 d�21;J�i1,...,iK ;j1,...,jL� ? Si1 · · · SiK tj1 · · · tjL �

2
Fs

b

NX
i�1

Si 2
Ft

b

MX
j�1

tj . (2)

The tensor product D�i1,...,iK ;j1,...,jL�J�i1,...,iK ;j1,...,jL�, where
J�i1,...,jL� � ji1ji2 · · · jiK zj1zj2 · · · zjL is the binary equiva-
lent of Aj 1 Bz , treating both signal (S and index i) and
noise (t and index j) simultaneously. Elements of the
sparse connectivity tensor D�i1,...,jL� take the value 1 if the
corresponding indices of both signal and noise are chosen
(i.e., if all corresponding indices of the matrices A and B
are 1) and 0 otherwise; it has C unit elements per i index
and L per j index representing the system’s degree of con-
nectivity. The d function provides 1 if the selected sites’
product Si1 · · · SiK tj1 · · · tjL is in disagreement with the
corresponding element J�i1,...,jL�, recording an error, and 0
otherwise. Notice that this term is not frustrated, as there
are M 1 N degrees of freedom and only M constraints
from Eq. (1), and can therefore vanish at sufficiently low
temperatures. The last two terms on the right represent our
prior knowledge in the case of sparse or biased messages
Fs and of the noise level Ft and require assigning certain
values to these additive fields. The choice of b ! `

imposes the restriction of Eq. (1), limiting the solutions
to those for which the first term of Eq. (2) vanishes, while
the last two terms, scaled with b, survive. Note that the
noise dynamical variables t are irrelevant to measuring
the retrieval success m �

1
N ���

PN
i�1 jisgn�Si�b���j . The

latter monitors the normalized mean overlap between the
Bayes-optimal retrieved message, shown to correspond
to the alignment of �Si�b to the nearest binary value [6],
and the original message; the subscript b denotes thermal
averaging.
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Since the first part of Eq. (2) is invariant under the
transformations Si ! Siji , tj ! tjzj , and J�i1,...,jL� !
J�i1,...,jL�ji1 · · · jiK zj1zj2 · · · zjL � 1, it would be useful to
decouple the correlation between the vectors S, t and j ,
z . Rewriting Eq. (2) using this gauge, one obtains a simi-
lar expression apart from the last terms on the right which
become Fs�b

P
k Skjk and Ft�b

P
k tkzk .

The random selection of elements in D introduces dis-
order to the system; we calculate the partition function
Z�D , J� � Tr�S,t 	 exp�2bH � averaged over the disor-
der and the statistical properties of the message and noise,
using the replica method [5,7]. Taking b ! ` gives rise
to a set of order parameters

qa,b,...,g �

*
1
N

NX
i�1

ZiS
a
i S

b
i , . . . , S

g
i

+
b!`

,

ra,b,...,g �

*
1
M

MX
i�1

Yjt
a
j t

b
j , . . . , t

g
j

+
b!`

,
(3)

where a, b, . . . represent replica indices, and the variables
Zi and Yj come from enforcing the restriction of C and L
connections per index, respectively [5]:

d

√ X
�i2,...,iK �

D�i,i2,...,jL� 2 C

!

�
I 2p

0

dZ
2p

Z
P

�i2,...,iK �
D�i,i2,...,jL �2�C11�

,

(4)
and similarly for the restriction on the j indices.

To proceed with the calculation one has to make an
assumption about the order parameters’ symmetry. The
assumption made here, and validated later on, is that of
replica symmetry in the following representation of the
order parameters and the related conjugate variables:

qa,b,...,g � aq

Z
dx p�x�xl , bqa,b,...,g � aq̂

Z
dx̂ p̂�x̂�x̂l ,

ra,b,...,g � ar

Z
dy r� y�yl , bra,b,...,g � ar̂

Z
dŷ r̂� ŷ�ŷl ,

(5)

where l is the number of replica indices, a� are normal-
ization coefficients, and p�x�, bp�x̂�, r� y� and br�ŷ� rep-
resent probability distributions. Unspecified integrals are
over the range �21, 11�. Extremizing the averaged ex-
pression with respect to the probability distributions one
obtains the following free energy per spin:
1
N

�lnZ�j,z ,D � Extr�p ,bp ,r,br	
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where �?�j and �?�z denote averages over the input and
noise distributions of the form

�?�j �
X

j�61

Ω
1 1 tanhFs

2
dj,21 1

1 2 tanhFs

2
dj,1

æ
�?�

(7)
and similarly for �?�z , where Fs is replaced by Ft .

The free energy can then be calculated via the saddle
point method. Solving the equations obtained by vary-
ing Eq. (6) with respect to the probability distributions
p�x�, bp�x̂�, r� y�, and br� ŷ� is generally difficult. The so-
lutions obtained in the case of unbiased messages (the most
interesting case as most messages are compressed prior to
transmission) are for the ferromagnetic phase:

p�x� � d�x 2 1�, bp�x̂� � d�x̂ 2 1� ,

r� y� � d� y 2 1�, br� ŷ� � d� ŷ 2 1� ,
(8)

and for the paramagnetic phase (there is no spin-glass so-
lution due to lack of frustration):

p�x� � d�x�, bp�x̂� � d�x̂�, br� ŷ� � d� ŷ� ,

r� y� �
1 1 tanhFt

2
d� y 2 tanhFt�

1
1 2 tanhFt

2
d� y 1 tanhFt� . (9)

These solutions clearly obey the saddle point equations.
However, it is necessary to validate the stability of the so-
lutions and the replica symmetric ansatz itself. To address
these questions we obtained solutions to the system de-
scribed by the Hamiltonian (2) via the TAP method of
finitely connected systems [5]; we solved the saddle point
equations derived from Eq. (6) numerically, representing
all probability distributions by up to 104 bin models and
carrying out the integrations via Monte Carlo methods; fi-
nally, to show the consistency between theory and prac-
tice we carried out large scale simulations which will be
presented elsewhere. The results obtained by the various
methods are in complete agreement.

The solutions obtained for the various cases fall into two
different categories: that of K � L � 2 and that of K $ 3
or L $ 3, which we therefore treat separately.

For unbiased messages and either K $ 3 or L $ 3 we
obtain the solutions (8) and (9) both by applying the TAP
approach and by solving the saddle point equations nu-
merically. The former was carried out at the value of Ft

which corresponds to the true noise and input bias levels
(for unbiased messages Fs � 0) and thus to Nishimori’s
condition [8], where no replica symmetry breaking effect
is expected. This is equivalent to having the correct prior
within the Bayesian framework [9] and enables one to ob-
tain analytic expressions for some observables as long as
some gauge requirements are obeyed [8]. Numerical solu-
tions show the emergence of stable dominant delta peaks,
consistent with those of (8) and (9). The question of lon-
gitudinal mode stability (corresponding to the replica sym-
metric solution) was addressed by setting initial conditions
for the numerical solutions close to the solutions (8) and
(9), showing that they converge back to these solutions
which are therefore stable.

The most interesting quantity to examine is the maxi-
mal code rate, for a given corruption process, for which
messages can be perfectly retrieved. This is defined in
the case of K , L $ 3 by the value of R � K�C � N�M
for which the free energy of the ferromagnetic solution
becomes smaller than that of the paramagnetic solution,
constituting a first order phase transition. A schematic de-
scription of the solutions obtained is shown in the inset in
Fig. 1a. The paramagnetic solution (m � 0) has a lower
free energy than the ferromagnetic one (low/high free ener-
gies are denoted by thick and thin lines, respectively; there
are no axis lines at m � 0, 1) for noise levels p . pc and
vice versa for p # pc; both solutions are stable. The crit-
ical code rate is derived by equating the ferromagnetic and
paramagnetic free energies to obtain

Rc � 1 2 H2�p� � 1 1 �p log2p 1 �1 2 p� log2�1 2 p�� .

(10)

This coincides with Shannon’s capacity. To validate
these results we obtained TAP solutions for the unbiased
message case (K � L � 3, C � 6), presented in Fig. 1a
(plusses), in comparison to Shannon’s capacity (solid
line).

Analytical solutions for the saddle point equations can-
not be obtained for the case of biased patterns and we there-
fore resort to numerical methods and the TAP approach.
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FIG. 1. Critical code rate as a function of the flip rate p, ob-
tained numerically and via the TAP approach (N � 104), and
averaged over ten different initial conditions with error bars
much smaller than the symbol size. (a) Numerical solutions
for K � L � 3, C � 6 and varying input bias fs (squares) and
TAP solutions for both unbiased (plusses) and biased (diamonds)
messages; initial conditions were chosen close to the analytical
ones. The critical rate is multiplied by the source information
content to obtain the maximal information transmission rate. In-
set: The ferromagnetic and paramagnetic solutions as functions
of p; thick and thin lines denote stable solutions of lower and
higher free energies, respectively. (b) For the unbiased case of
K � L � 2; initial conditions for the TAP (plusses) and the nu-
merical solutions (diamonds) are of almost zero magnetization.
Inset: The ferromagnetic (optimal/suboptimal) and paramag-
netic solutions as functions of p; thick and thin lines are as in
(a); dashed lines correspond to unstable solutions.
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The maximal information rate (i.e., code rate 3 H2� fs �
�1 1 tanhFs��2�, the source redundancy) obtained by the
TAP method (diamonds) and numerical solutions of the
saddle point equations (squares) for each noise level are
shown in Fig. 1a. Numerical results have been obtained
using 103 104 bin models for each probability distribu-
tion and had been run for 105 steps per noise level point.
The various results are highly consistent and practically
saturate Shannon’s bound for the same noise level.

The MN code for K , L $ 3 seems to offer optimal per-
formance. However, the main drawback is rooted in the
coexistence of the stable m � 1, 0 solutions, shown in
Fig. 1a (inset), which implies that from some initial con-
ditions the system will converge to the undesired para-
magnetic solution. Studying the ferromagnetic solution
numerically shows a highly limited basin of attraction,
which becomes smaller as K and L increase, while the
paramagnetic solution at m � 0 always enjoys a wide
basin of attraction. As initial conditions for the decoding
process are typically of close-to-zero magnetization (al-
most no prior information about the original message is
assumed) it is likely that the decoding process will con-
verge to the paramagnetic solution (as has been observed
via computer simulations by us and by others [3]).

While all codes with K , L $ 3 saturate Shannon’s
bound and are characterized by a first order, paramagnetic
to ferromagnetic, phase transition, codes with K � L � 2
show lower performance and different physical character-
istics. The analytical solutions (8) and (9) are unstable
at some flip rate levels and one resorts to solving the
saddle point equations numerically and to TAP based
solutions. The picture that emerges is sketched in the inset
in Fig. 1b: The paramagnetic solution dominates the high
flip rate regime (appearing as a dominant delta peak in
the numerical solutions) up to the point p1 (denoted as
1 in the inset) in which a stable ferromagnetic solution
of higher free energy appears (thin lines at m � 61).
At a lower flip rate value p2 the paramagnetic solution
becomes unstable (dashed line) and is replaced by two
stable suboptimal ferromagnetic (broken symmetry)
solutions which appear as a couple of peaks in the various
probability distributions; typically, these have a lower
free energy than the ferromagnetic solution until p3, after
which the ferromagnetic solution becomes dominant (at
some code rate values it is dominant directly following
the disappearance of the paramagnetic solution). Still,
only once the suboptimal ferromagnetic solutions disap-
pear, at the spinodal point ps, a unique ferromagnetic
solution emerges as a single delta peak in the numerical
results (plus a mirror solution). The point in which the
suboptimal ferromagnetic solutions disappear constitutes
the maximal practical flip rate for the current code rate
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and was defined numerically (diamonds) and via TAP
solutions (plusses) as shown in Fig. 1b.

Notice that initial conditions for both TAP and the nu-
merical solutions were chosen almost randomly, with a
very slight bias of O �10212�, in the initial magnetiza-
tion. The TAP dynamical equations are identical to those
used for practical BP decoding [5] and therefore provide
equivalent results to computer simulations with the same
parametrization, supporting the analytical results. The ex-
cellent convergence results obtained point out the exis-
tence of a unique pair of global solutions to which the
system converges (below ps) from practically all initial
conditions. This observation and the practical implica-
tions of using the K � L � 2 code have not been obtained
by information theory methods (e.g., [3]); these prove the
existence of very good codes for C, L $ 3 and examine
decoding properties only via numerical simulations.

In summary, we discovered that for certain Gallager-
type codes with K $ 3 or L $ 3, one potentially obtains
optimal performance, saturating Shannon’s bound. This
comes at the expense of a decreasing basin of attraction
making the decoding process increasingly impractical. A
more practical code, K � L � 2, shows close to optimal
performance with a very large basin of attraction. Study-
ing the typical performance of Gallager-type codes, which
complements the methods used in the information theory
literature, is the first step towards understanding their ex-
ceptional performance and in the search for a principled
method for designing optimal Gallager-type codes. Im-
portant aspects that are yet to be investigated include other
noise types, irregular constructions, and the significance of
finite size effects.
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