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For plane-wave and many-spira states of the experimentally based Luo-Rudy 1 model of heart tissuein
large (8 cm square) domains, we show that a space-time-adaptive time-integration algorithm can achieve
afactor of 5 reduction in computational effort and memory—but without a reduction in accuracy —when
compared to an algorithm using a uniform space-time mesh at the finest resolution. Our results indicate
that such an algorithm can be extended straightforwardly to simulate quantitatively three-dimensional

electrical dynamics over the whole human heart.
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Understanding the dynamics of excitable media such as
heart tissue is a problem of substantia interest to physi-
cists, physiologists, biomedical engineers, and doctors.
For reasons not yet understood experimentally, the healthy
time-periodic spatially coherent beating of a human heart
will sometimes change to a nonperiodic spatially incoher-
ent fibrillating state in which the heart cannot pump blood
effectively (leading to death if suitable treatment is not ad-
ministered quickly). It would be valuable to understand
how the onset of arrhythmias that lead to fibrillation de-
pends on details such as the heart’s size [1], geometry,
electrical state, anisotropic fiber structure [2], and inho-
mogeneities. A deeper understanding of the heart's dy-
namics may also make possible the invention of protocols
by which electrical feedback could be used to prevent fib-
rillation [3].

Because of many experimental difficulties in studying
the three-dimensiona dynamics of a heart [4], simulations
of cardiac tissue (and more generaly of excitable media)
play an extremely important role in identifying and testing
specific mechanisms of arrhythmia. However, quantita-
tively accurate simulations of an entire three-dimensional
human heart are not yet feasible. The essentia difficulty
is that human heart muscle is a strongly excitable medium
whose electrical dynamics involve rapidly varying, highly
localized fronts (see Figs. 1 and 2). The width of such a
front is about 0.05 cm and a simulation that approximates
well the dynamics of such afront requires a spatial resolu-
tion at least 5 times smaller, Ax = 0.01 cm. The muscle
in an adult human heart has a volume of about 250 cm?,
and so a uniform spatial resolution of 0.01 cm would re-
quire acomputational gridwith =3 X 10% nodes. Depend-
ing on the assumed material properties of the heart and
on the quantities of interest to analyze, up to 50 floating
point numbers might be associated with each node, re-
quiring the storage and processing of about 10'° numbers
per time step. The fastest time scale in heart dynamics,
about 0.1 ms, is associated with the rapid depolarization
of the cell membrane, and a reasonable resolution of this
depolarization requires a time step about a fifth of this,
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At = 0.02 ms. Since arrhythmias such as fibrillation may
require several seconds to become established, the 10'°
numbers associated with the spatial mesh would have to
be evolved over about 10° time steps. Such a uniform
mesh calculation currently exceeds existing computational
resources and has not yet been carried out.

A clue about how to improve heart simulations comes
from experiments [4] and simulations [5,2], which suggest
that the electrical membrane potential V(z,x) in the fib-
rillating state consists of many spirals (for approximately
two-dimensional tissue such asthe atrium, see Fig. 2) or of
many scroll waves (for thicker cardiac tissue such as the
left ventricle [2]). A striking feature of these spatiotem-
poral disordered states is that the dynamics is sparse: at
any given time, only a small volume fraction of the ex-
citable medium is occupied by the fronts, and away from
the frontsthe dynamicsis slowly varying in space and time.
It may then be the case that the computational effort and
storage can be greatly reduced, from being proportional to
the volume of the excitable medium (the case for a spa-
tially uniform mesh) to being proportional to the arclength
(in 2D) or surface area (in 3D) of the fronts.

In this Letter, we show for representative solutions of
the quantitatively accurate Luo-Rudy 1 (LR1) membrane
model of cardiac tissue [6] that a space-time adaptive-
mesh-refinement algorithm (AMRA) [7] can indeed take
advantage of the sparse excitable dynamics to reduce by a
factor of 5 the computational effort and memory needed to
simulate arrhythmias in large domains. Further, we show
that there is no significant reduction in accuracy when
using an AMRA compared to an algorithm that uses a
uniform space-time mesh at the finest resolution of the
AMRA. Since the AMRA treats spatial derivatives ex-
plicitly and has afairly simple data structure consisting of
nested patches of uniform Cartesian meshes, the AMRA
can be parallelized straightforwardly [8], leading to a fur-
ther reduction in computational effort by the number of
processors. The AMRA is also general and does not re-
quire the use of reduced models [2], which increase effi-
ciency but sacrifice experimental accuracy by using fewer
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variables and perhaps explicitly eliminating rapid vari-
ables. The results presented below suggest that a quan-
titatively accurate AMRA simulation of fibrillation in an
entire human left ventricle for several seconds with an ef-
fective 0.01 cm resolution should already be practical with
existing computers.

In the following, we discuss some details of the AMRA
and then its accuracy and efficiency for simulations of the
LR1 model in large one- and two-dimensional domains.
Our particular algorithm was a straightforward modifica-
tion of an AMRA that has been used by other researchers
to integrate hyperbolic sets of partial differential equa-
tions such as the Euler equations of fluid dynamics [7].
Since key mathematical and algorithmic details are avail-
able elsewhere[7], only some essential ingredients and our
modifications of them are briefly described here; a more
detailed discussion will be given elsewhere [9].

The AMRA approximates a given continuous field
such as the cardiac membrane potential V(z,x) on a set
of nested locally uniform patches of d-dimensional Carte-
sian meshes in a d-dimensional Cartesian box [7]. On
each patch, terms in the dynamical equations containing
gpatial derivatives are approximated by second-order-
accurate finite differences and an explicit forward-
Euler method is used to advance them in time. Terms not
involving spatia derivatives are integrated implicitly using
a backward-Euler method. The power of the algorithm
arises from its ability to automatically and efficiently
refine or coarsen the representations of fields by varying
the number of grid points locally to achieve a specified
truncation error in the potential V. These errors are
estimated by Richardson extrapolation, as described in
Refs. [7,9], but there is the flexibility to use other criteria.
A further reduction in computational effort is achieved by
alowing the time step to change locally with the spatial
mesh [7]. Although others have explored adaptivity in
either space or time [10], to our knowledge, ours is the
first study of an algorithm for excitable media for which
both the spatial and temporal resolutions change locally.

An important subtlety is that our AMRA was designed
for hyperbolic equations but is here applied to an ex-
citable medium which is described by parabolic equations.
For explicit time integrations of hyperbolic equations, the
Courant-Friedrichs-Lewy (CFL) condition for the onset of
numerical instability [7] bounds the largest possible local
time step Ar by the first power of the local spatia reso-
lution Ax. For parabolic equations, the stability condition
for an explicit algorithm bounds the time step by Ax?, and
indeed we found that the local values of A7 and Ax on
the finest mesh level had to be consistent with this more
stringent condition when integrating the LR1 model. A
standard way to avoid the stability restriction on Az isto
use a semi-implicit or fully implicit time-integration algo-
rithm [2,10]. However, one cannot conclude that a semi-
implicit algorithm is automatically better than our explicit
one since, for afixed spatial resolution, the larger time step
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alowed by a semi-implicit method may give less accuracy
during the upstroke [11] and the method may require more
computation per time step. Some of these issues will be
discussed quantitatively elsewhere for the 1D case [9].

Our results for the AMRA were obtained for the quanti-
tatively accurate LR1 model [6], which in 2D can be writ-
ten in the form

1
Cnd, V(t,x,y) = = (g:02V + g,02V)
B Y

- Iion(m,V) - Istim(tvxvy)s (1)
dm
o f(m,V),
where V(tz, x) is the membrane potential at time r and at
position x = (x,y), C,, is the membrane capacitance per
unit area, B is a surface-to-volume ratio of a heart cell,
g« and g, are tissue conductivities (generally not equal
since the heart is anisotropic), I;,, isthetotal ionic current
flowing across the membrane, and I, is a specified cur-
rent injected to initiate a propagating wave. [For al calcu-
lations reported below, the Neumann boundary condition
(7 - V)V = 0 was used, where 7 is the unit vector normal
to a given boundary point.] The seven voltage-sensitive
membrane variables m; (¢, x) for the LR1 model determine
the flow of various ions across the membrane and satisfy
ordinary differential equations, which are integrated by a
backward-Euler method. The membrane parameter values
of Ref. [6] were used except for the calcium conductance
gca in the I, term, whose value was changed from 0.09
to 0.045 (in units of mQ ™' - cm~2). The medium was
isotropic with g, and g, setto 1 kQ ! - em™! and B set
t0 3000 cm™~!. To avoid expensive evaluations of exponen-
tials in the determination of voltage-dependent membrane
parameters, their values were obtained instead by linear in-
terpolation of data stored in a lookup table. This reduced
the computational time by a factor of about 4 without any
loss of accuracy [9].

In addition to the physical parameters in Eq. (1), many
numerical and algorithmic parameters need to be specified
[7,9]. Severa of the more important choices are an initial
resolution for a uniform coarse mesh covering the domain
(we used Ax = 0.05 cm), the temporal resolution for the
coarse mesh (we used At = 0.32 ms), the maximum num-
ber of grid levelsallowed for refinement (we used the value
3), the factor by which the spatial mesh is refined locally
(we chose the factor 2), the factor by which time steps are
refined locally (we chose the factor 4), the error tolerance
used in the Richardson extrapolation estimate of the local
truncation error (we chose e = 2 X 107?), and the num-
ber of time steps to elapse before estimating a local error
and regridding (we chose 2).

As a first demonstration of the effectiveness of the
AMRA, Fig. 1 summarizesa3-level calculation of the LR1
model in a 1D domain of length L = 9 cm. The system
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FIG. 1 (color). (a) Spatia profile V(z,x) at time t = 256 ms

for a 1D front propagating to the right in a domain of length
L = 9 cm, ascalculated by a3-level AMRA for the Luo-Rudy 1
(LR1) cardiac model [6]. The three regions of coarse, fine, and
finest mesh resolution (from Ax = 0.05 cm, Ar = 0.32 ms to
Ax = 0.0125 cm, At = 0.02 ms) are indicated by the black,
green, and red portions of the curve. (b) Blowup of the small in-
terval indicated near x = 8.4 cmin (@), showing how the 3-level
mesh structure (vertical lines) has automatically resolved the
sharp front.

was stimulated at + = 0 with a0.2 cm sguare pulse along
the left edge of the domain. This pulse evolved into a
front propagating to the right, which we studied until the
medium was quiescent again, 320 ms later. The spatial
profile of the pulse was independent of the initial condi-
tion and of the system size for L = 9 cm. One can see
from the spatial profile in Fig. 1a at time ¢ = 256 ms
how narrow is the front (region of depolarization) com-
pared to the profile's extent and this specifically is what
makes numerical simulation of highly excitable media
so difficult. In the vicinity of the front, Fig. 1b shows
the grid structure that was automatically calculated by
the AMRA; the colors black, green, and red indicate the
coarse, fine, and finest mesh regions, respectively. Taking
into account the reduction of spatial mesh points and the
asynchronous updating of grid points using spatially vary-
ing time steps [7], the AMRA overall used a factor of 3
fewer grid points and did less computational work by a
factor of 20 for the LR1 model than a constant-time-step
uniform-gpatial-mesh forward-Euler code using the finest
space-time resolutions of the AMRA and an identica
lookup table for voltage-dependent membrane parameters.
The use of a larger time step where the spatial mesh is
coarser accounted for afactor of 7 in the overall factor of
20. The temporal profiles at a fixed point in space, the
front speeds, and the times between peak and recovery at
a fixed point in space (action potential duration) for the
AMRA and for a uniform mesh at the finest space-time
resolution (discussed in Ref. [9]) agree within 1% relative
errors except at the extremely narrow peaks of the tem-
poral profiles, where the relative error is about 6%. We
conclude that there is no significant loss of accuracy when
using the more efficient AMRA.

Figure 2 shows how the AMRA performs for the LR1
model in a large square domain of size L = 8 cm, about
the length of a human ventricle, using the same parameter
values as the 1D case, for which spirals are unstable and
break up into other spirals. This complex many-spiral dy-
namical state is a much stronger test of the efficiency and
utility of an AMRA than Fig. 1 since the geometry of the
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FIG. 2 (color). (@) Three-level AMRA calculation of the 2D
LR1 model at time ¢t = 791 ms after stimulus S2, in a square
domain of length L = 8 cm. Field value ranges for V(z,x,y)
are color coded with dark blue for V.= —5 mV, red for —5 =
V = —65 mV, and yellow for V = —65 mV. The fronts then
appear as thin dark blue regions. Parameter values are the same
asin Fig. 1. (b) The hierarchical Cartesian meshes of the AMR
algorithm corresponding to the snapshot of V in (a). The yellow
and green regions correspond to the fine (level 2) and finest
(level 3) grids and track closely the fronts.
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fronts fluctuates strongly in time. A multispiral state was
initiated by a standard S1-S2 stimulation protocol [5] in
which aright-going planar pulse is created by stimulating
the left edge of the domain (the S1 stimulus), and the lower
left quadrant of the domain is excited (the S2 stimulus)
335 mslater, when the left half of the domain has returned
to rest but the right half is still repolarizing. A comparison
of thefield V with the instantaneous grid structure approxi-
mating V 791 ms after S2 is given in Fig. 2 and demon-
strates how the AMRA is ableto increase automatically the
space-time resolution to the finest level only in the vicinity
of the fronts, greatly decreasing the overall computational
effort since, at any given time, the sharp fronts indeed oc-
cupy only a small fraction of the domain. The total num-
ber of mesh points used by the AMRA varies substantially
with time during the spiral wave breakup, from4 X 10* to
1 X 10° mesh points with an average of 8 X 10* points.
A comparison of these results with those required by a
uniform-spatial-mesh constant-time-step code using the
finest AMRA resolution [9] shows that the AMRA uses
about 5 times fewer mesh points, requires less integration
work by afactor of 11, and achieves a speedup of about a
factor of 5[9].

The above results can be used to estimate the computer
time needed by the AMRA to integrate for one second
the LR1 model for a 3D section of left ventricular wall of
dimensions 8 cm X 8 cm X 1 cm, with an effective fine
uniform mesh resolution of Ax = 0.0125 cmin space and
At = 0.02 msin time. Using a Dec Alpha workstation
with a 533-MHz 21164 chip, we found that a 3-level 2D
calculation at this resolution using our FORTRAN 77 AMRA
code took about 7 hours. The time for the 3D calcula
tion then can be estimated by assuming that each of the
spirals in Fig. 2 becomes a continuous stack of spirals (a
scroll wave), with the stack transverse to the square sides
of the domain [2], and correspondingly that the mesh re-
finements extend uniformly from the 2D case through the
transverse direction. A 3D AMRA calculation should then
take roughly 10 days, which is a factor of 6 speedup over
the 2 months required to complete asimilar calculation us-
ing a uniform space-time mesh with the above resolution.
Without substantial change to the AMRA, an additional
speedup of at least 70 can be gained with a 100-node par-
alel computer [8]. This further gain would reduce the
total simulation time for one second of the LR1 model in
this 3D domain to 4 hours or less. Simulation of an entire
heart (a factor of 4 greater in volume) for one second with
a LR1 model should then be possible on the time scale of
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one day, which is acceptably fast for exploring many inter-
esting questions about the dependence of arrhythmias on
parameters.

In summary, we have shown that a space-time adaptive
algorithm [7] using one of the simplest possible data struc-
tures (a hierarchy of Cartesian meshes) can already attain
a factor of 5 reduction in computational effort and mem-
ory when applied to the experimentally based LR1 cardiac
membrane model [6], and that this reduction is achieved
without incurring a corresponding reduction in accuracy
when compared to an explicit code using a uniform space-
time mesh. Important next steps include generalizing the
method to three space dimensions, allowing regions bound
by curved surfaces, and making specific applications to the
initiation and control of human arrhythmias.
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