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The CZDE model [P. Cizeau, S Zapperi, G. Durin, and H. E. Stanley, Phys. Rev. Lett. 79, 4669
(1997)] for the dynamics of a domain wall in soft-magnetic materials is investigated. The equation
of motion for the domain wall is reduced to a dimensionless form where the control parameters are
clearly identified. In this way we show that in soft-magnetic materials with low anisotropies the noise
can be approximated by a columnar disorder, and perturbation theory gives a good estimate of the
avalanche exponents. Moreover, the resulting exponents are found to be identical to those obtained for
directed Abelian sandpile models. The analogies and differences with these models and the question of
self-organized criticality in the Barkhausen effect are discussed.
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The Barkhausen effect (BE) has been taken as an ex-
perimental observation of self-organized criticality (SOC)
[1]. Based on phenomenological analogies between the
BE and sandpile models, such as the existence of power
law distributions of avalanche size P�s� � s2t and dura-
tion P�T � � T2a , some authors have claimed that the BE
exhibits SOC behavior [2,3]. On the other hand, it has
been shown that the demagnetization field acts as a feed-
back mechanism which drives the system into the critical
state [4–7], supporting the existence of SOC in the BE.

This conclusion has been criticized by other researches
which have pointed out that the observation of power law
distributions is not necessarily an evidence of SOC [8,9].
There are alternative approaches, like the random field
Ising model [10,11], where the power law distributions are
a consequence of the scaling properties of disorder. On
the other hand, numerical simulations of a micromagnetic
model have shown that different regimes may be observed,
depending on the ratio between the exchange correlation
and structural correlation lengths [12]. In order to observe
criticality the tuning of the exchange correlation length is
necessary, excluding the occurrence of SOC.

In the central part of the hysteresis loop the Barkhausen
jumps in the magnetization are mainly due to domain walls
motion, while other effects like nucleation and irreversible
rotations can be neglected. Moreover, for low disorder
the domain walls do not have overhangs [13], and for
long rod geometries one can have long domain walls. In
this situation a good model to describe the domain wall
dynamics is the one introduced by Cizeau, Zapperi, Durin,
and Stanley (CZDE) [5], which is a generalization of the
single degree of freedom model of Alessandro et al. [14].
This model has several limitations: it neglects nucleation,
interactions between domain walls, temperature effects,
and it is valid only for low disorder. However, even with
these simplifications it gives a satisfactory explanation to
some of the features observed in BE experiments [5,7],

Some of the statistical properties resulting from this
model have been already investigated in [5]. The upper
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critical dimension is dc � 3 and the critical exponents
were obtained by perturbation theory. However, there are
still some open questions. For instance, it is not clear yet if
perturbation theory gives the correct exponents or a renor-
malization group (RG) analysis is required.

In the present work we investigate the CZDE model.
First, we reduce the CZDE equation of motion to a di-
mensionless form where we can clearly identify the con-
trol parameters of the model. Then we analyze the form
of the noise correlator, taking into account the typical val-
ues of the different magnitudes for soft-magnetic materials
with low anisotropies. We found out that in this case the
noise correlator can be approximated by a columnar dis-
order and, hence, perturbation theory [5] gives a good es-
timate of the avalanche exponents. From our dimensional
analysis we also explain some features observed in the BE
in magnetic materials under an external tensile stress. Fi-
nally, we discuss some similarities and differences of the
CZDE model and directed Abelian sandpile models, based
on the evolution of the avalanche front and the type of
disorder.

In the CZDE model a 180± domain wall is modeled by
a (d 2 1)-dimensional interface, dividing two regions of
opposite magnetization, moving in a d-dimensional envi-
ronment described by its position h�x, t�. Considering the
contribution of magnetostatic, ferromagnetic, and magne-
tocrystalline interactions, one obtains the following equa-
tion of motion [5]

l
≠

≠t
h�x, t� � n0=2h�x, t� 1 2m0MsH 1 D1�2h�x, h�x, t��

2 4m0M2
sN

Z dd21x0

V
h�x0, t�

1
Z

dd21x0K�x 2 x0� �h�x0, t� 2 h�x, t�� ,

(1)

where l is a viscosity coefficient, n0 is the surface ten-
sion of the wall, H is the magnetic field intensity, V is
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the sample volume, Ms is the saturation magnetization,
and D is the strength of the pinning centers. Long-range
demagnetization effects are described by the fourth term
in the right-hand side, where N is the demagnetization
factor. Dipolar interactions are characterized by the fifth
term where the kernel K�x� has Fourier transform K̃�k� ~

m0M2
s jkjcos2u, u being the angle between k and the mag-

netization. h�x, h� is a Gaussian uncorrelated noise due to
lattice defects or other factors, with zero mean and noise
correlator

�h�x, h�h�x0, h0�� � dd�x 2 x0�R�h 2 h0� . (2)

R�h� has the asymptotic behaviors R�h� 	 1 for h ø a�

and R�h� ø 1 for h ¿ a�, where a� is a characteristic
correlation length of the disorder, in general of the order
of the distance between the pinning centers.

For the analysis developed below it is appropriate to
express the CZDE equation of motion in dimensionless
variables. We take as a characteristic length

lM �
n0

4m0M2
s

, (3)

which is the characteristic length above which demagneti-
zation effects become relevant [5]. As characteristic time
we take tM � ll2

M�n0. Then x and h are expressed in
units of lM and t is expressed in units of tM . Moreover,
we express H in units of 2Ms, K�x� in units of 4m0M2

s ,
and D in units of n

2
0�l32d

M . Using the dimensionless vari-
ables Eq. (1) can be written as
≠

≠t
h�x, t� � =2h�x, t� 1 H

1 D1�2h�x, h�x, t�� 2 N
Z dd21x0

V
h�x0, t�

1
Z

dd21x0K�x 2 x0� �h�x0, t� 2 h�x, t�� ,

(4)

and the noise correlator is still given by Eq. (2), but now
R�h� has the asymptotic behaviors

R�h� 	
Ω

1 for h ø r ,
0 for h ¿ r .

(5)

where r � a��lM .
In the dimensionless equation of motion we identify the

control parameters H, N , D, and r . The influence of
the control parameters H, N , and D has already been
investigated in [5]. The attention is thus focused in the
remaining control parameter r . From Eq. (5) it is clear
that this parameter has a strong influence on the form of
the noise correlator. Depending on r , the noise can be
approximated by an uncorrelated noise (r ø 1) or by a
columnar disorder (r ¿ 1). The order of magnitude of
lM can be computed, taking into account that n0 � Kdw,
where K is the anisotropy constant and dw is the domain
wall width. Moreover, n0Ms � 1 T and Ms � 106 A�m
for soft magnetic materials resulting in lM � 1026Kdw.
In materials with low anisotropies (K ø 106 J�m3) lM ø
dw. Besides, for low disorder, dw ø a� and, therefore,
lM ø a� (r ¿ 1). Thus, the noise is well approximated
by a columnar disorder.

In such a case R�h� can be approximated by the first
term of its expansion around h � 0, which is exactly what
one does in perturbation theory. In other words, in soft
magnetic materials with low anisotropies and low disorder,
perturbation theory will give a good estimate of the scaling
exponents. Hence, the dynamic, roughness and correlation
length exponents, below dc � 3, are given by [5]

z � 1, z �
3 2 d

2
, n �

1
d 2 1

, (6)

respectively. On the other hand, the avalanche scaling ex-
ponents t and a [P�s� � s2t , P�T � � T2a] can be ob-
tained using some scaling relations derived in [5] resulting

t � 2 2
1
a

, a �
d 1 1

2
. (7)

Now we proceed to discuss these results in comparison
with experiments.

The samples used in BE experiments are usually three
dimensional (here we exclude thin films where the CZDE
does not apply [5]), with a three-dimensional array of do-
mains separated by two-dimensional domain walls. Since
the upper critical dimension is dc � 3 we thus expect
to measure the mean field (MF) exponents t � 1.5 and
a � 2. This is actually observed in some experimental
setups [5]. However, there are magnetic materials where
the avalanche exponents are smaller that those predicted by
the MF theory, with values around t � 1.3 and a � 1.5
[4,6,7]. These values are observed, for instance, in Per-
minvar [4], a soft-magnetic material with high anisotropy,
and in soft-magnetic materials with high anisotropies in-
duced by an applied uniaxial stress [6,7].

A possible explanation of this fact is the following. In
some magnetic materials, due to anisotropy, the domain
wall is practically flat along the direction of the magneti-
zation, but rough perpendicular to the magnetization [15].
In this case the fluctuations of the domain wall are effec-
tively two dimensional [16], and the avalanche exponents
are obtained setting d � 2 in Eq. (7) resulting t 	 1.33
and a � 1.5. These values are actually in very good agree-
ment with those reported in [4,6,7]. However, we should
take into account that for high anisotropies the noise cor-
relator may not be approximated by a columnar disorder
and, therefore, perturbation theory may not give a good
estimate of the scaling exponents. In this case RG correc-
tions yield [17] t � 1.25 and a � 1.43, which are, nev-
ertheless, smaller than those measured in experiments.

Our analysis is not limited to the power law exponents,
but we also make some predictions about the scaling of
the cutoffs. The power laws for the avalanche size and
duration are valid only up to certain cutoffs sc and Tc.
In the same way the Barkhausen jump amplitude y also
follows a power law up to a cutoff yc. If these cutoffs are
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a consequence of a finite size effect, then we can affirm
that there is SOC in the BE; otherwise we can exclude this
possibility.

Recent experiments on the BE in soft magnetic materi-
als under an external stress [6,7] have drawn attention over
the stress dependency of these cutoffs. When an external
tensile stress s is applied to a positive magnetostrictive
the domain wall length L increases [18]. Hence, monitor-
ing the stress dependency of the cutoffs with s, we can
investigate if the cutoffs are actually due to a finite size
effect. Bahiana et al. [6] observed that yc increases with
increasing s, concluding that this cutoff is due to a fi-
nite size effect. However, more extensive measurements
by Durin and Zapperi [7] reveal that, while yc increases,
Tc decreases in such a way that sc remains constant.

This apparent contradiction can be explained analyz-
ing the stress dependency of our choice of characteristic
length lM [see Eq. (3)] and time tM . The experimental
evidence tells us that the characteristic avalanche size is
independent of s and, therefore, the same behavior is ex-
pected for the characteristic linear size of the avalanches.
In other words, lM should be independent of s. On the
other hand, n0 �

p
AKs and Ks � �3�2�lss, where A is

the exchange constant and Ks is the induced anisotropy
[19], yielding tM � ll2

M�n0 � s21�2 and yc � sc�tM �
s1�2. These scaling dependencies (that of tM and yc with
s) are in very good agreement with those reported from
the experimental measurements [6,7], clearly supporting
our dimensionless analysis. Moreover, they also reveal that
the increase of yc with increasing s, observed in recent ex-
periments on Barkhausen effect in soft magnetic materials
under applied stress [6,7], is not a finite size effect, but a
change in the time scale and, therefore, cannot be taken as
evidence of SOC in the Barkhausen effect.

As already pointed out in [5], and within the CZDE
model, the critical state is obtained only after the demag-
netization constant N and the driving rate c are fine tuned
to zero. Hence, the cutoffs observed in these experiments
can be attributed to the correlation length associated ei-
ther to the demagnetization field or to the driving field.
A similar behavior is observed in sandpile models where
criticality is obtained after the driving and dissipation rates
are fine tuned to zero [20]. Thus, even in sandpile models,
the prototype of the SOC system, we cannot speak about
SOC criticality in a strict sense.

The analogy between the CZDE model with sandpile
models is not limited to the control parameters, but it is
also found in other aspects. The dynamic scaling exponent
z � 1 and the avalanche exponents in Eq. (7) are identical
to those obtained for directed Abelian sandpile models
(DASM) [21].

DASM are sandpile models where toppling takes place
following a preferential direction, which in principle may
be determined by the action of certain external fields—
gravity, for instance. The toppling rule is in general deter-
ministic and the only source of noise is the driving field
1318
[21]. There is a time scale separation between the char-
acteristic time of the driving field and avalanche duration:
the system is perturbed by the driving field only after all
sites becomes stable. Hence, in the internal time scale of
the evolution of an avalanche the driving field does not
act, i.e., the noise introduced by the driving field acts as a
columnar disorder [22]. In analogy, we have obtained that
in soft magnetic materials with low anisotropies the noise
can be approximated by a columnar disorder. Further simi-
larities and also some differences are observed analyzing
the evolution of the avalanche front.

In the DASM the evolution of the avalanche is similar
to directed percolation, although it does not belong to the
directed percolation universality class [23]. The preferen-
tial direction is that indicated by the toppling rule, usually
referred to as depth l. With increasing time the avalanche
front advances to more depth layers and, therefore, the evo-
lution in time is equivalent to the evolution in depth, i.e.,
t � lz with z � 1. Hence, the mean squared displace-
ment along the preferential direction scales as �l2�t�� �
t2�z � t2. On the other hand, if z is the anisotropy ex-
ponent for the average transverse extent x� � lz of an
avalanche, then �x2

��t�� � t2z�z . In two dimensions the ex-
ponent z is obtained exactly [21] resulting z � 1�2 yield-
ing �x2

��t�� � t. Thus, the motion along the preferential
direction is ballistic and diffusive along x�.

A similar analysis can be performed for the evolution of
the avalanche front in the CZDE model. There are, never-
theless, some differences. Now the transverse space (the
direction of advance of the interface h) is one dimensional.
On the other hand, there is no preferential dimension in the
d 2 1 dimensional substrate, labeled by the position x. In
this case using simple scaling arguments one obtains that
�x2�t�� � t2�z � t2 and �Dh2�t�� � t2z�z , where Dh is the
interface advance during an avalanche. In two dimensions
using Eqs. (6) and (7), we obtain �Dh2�t�� � t.

Then we conclude that the evolution of the avalanche
front is very similar in both models. In the transverse direc-
tion we have normal diffusion, while in the other sub-space
the motion is ballistic type. One may ask how we also ob-
tain a ballistic type motion in the CZDE model, taking into
account that there is no preference direction in the sub-
strate. The answer is very simple: the action of an external
field is not the only possibility to obtain ballistic motion—
Lévy flights also give rises to this type of motion [24].

If we have a system of noninteracting particles which
follow diffusionlike motion and we apply a force F along
one direction, x for instance, then �x�t�� � yt and �x2�t�� �
y2t2, where y is linear in F. The other possibility is to
have a system of free noninteracting particles, but follow-
ing Lévy type diffusion. In this case, contrary to the clas-
sical diffusion, the distribution of displacements between
collisions is not narrow, but follows a Lévy distribution,
with the asymptotic behavior for large jumps l given by
P�l� � l212a . a is the characteristic exponent and when
0 , a , 1 the ballistic type motion results [24].
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The other question is how the ballisticlike motion ap-
pears in the CZDE model. The answer is found in the
long-range nature of dipolar interactions. The existence of
long-range interactions carries as a consequence that the
advance of the domain wall at a given position disturbs the
domain wall energy configuration at points far away from
this position, which may then advance. One thus expects
that the avalanche front is, in this case, characterized by
a wide distribution of jump distances (Lévy flights). This
conclusion has been obtained using naive arguments, but
it is clearly corroborated by the ballistic motion.

In summary, we have investigated the CZDE in soft-
magnetic materials with low anisotropies. After express-
ing the equation of motion in a dimensionless form we
have obtained that the noise correlator is approximated by
a columnar disorder. In this way we have shown that per-
turbation theory gives a good estimate of the avalanche ex-
ponents. Moreover, we have found that the evolution of the
avalanche front in the CZDE model has certain similarities
with DASM. Although there is no preference direction in
the CZDE model, due to long-range dipolar interactions,
the motion is ballistic.

We conclude that the cutoffs of the distributions of
avalanche size, duration, and amplitude observed in recent
Barkhausen experiments in soft magnetic materials under
an applied stress are not due to finite size effects, and
therefore these systems are not in a critical state. On the
contrary, the models proposed to explain the different fea-
tures observed in Barkhausen experiments show that criti-
cality is obtained after some control parameter is fine
tuned, e.g., the degree of disorder in the random-field Ising
model (RFIM), the ratio between the exchange and struc-
tural correlation lengths in micromagnetic models, or the
demagnetization factor in the CZDE model. This variety
of control parameters not only reveals the complex nature
of this phenomena, but also rules out the occurrence of
SOC. The competition of disorder and demagnetization
effects against the long range interactions drives the sys-
tem out from the critical state.
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