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Step-Edge Induced Anisotropic Domain-Wall Propagation
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We report the observation of anisotropic domain-wall propagation in ultrathin magnetic films with per-
pendicular anisotropy. A controlled density of step edges was introduced which allowed us to quantify its
influence on the domain-wall pinning. For a sawtooth arrangement of the step edges the corresponding
wall movement resulted in triangular shaped domains. All aspects of this anisotropic domain-wall evo-
lution could be reproduced by a simulation based on a modified Ginzburg-Landau-type soft-spin model.

PACS numbers: 75.60.Ch
The magnetization reversal process in thin films occurs
either by nucleation of reversed domains or by the dis-
placement of magnetic domain walls [1]. In the latter case,
inhomogeneities in the film act as pinning sites for the
domain walls and, consequently, have a strong influence
on the magnetic domain shape and the dynamics of the
magnetization reversal. These inhomogeneities are formed
by crystallographic defects or deviations of the film mor-
phology from an ideal atomically flat surface. In general,
the extent to which the films’ microstructure, as opposed to
their intrinsic properties, is affecting the domain structure
is difficult to quantify. This is due to the strong interre-
lationship of these effects. In previous investigations of
magnetization processes these influences were modeled by
introducing a distribution of coercive fields, thus leaving
the actual mechanism of the pinning unspecified [2,3]. A
more precise picture of the importance of the microstruc-
ture can be developed by introducing well-controlled
defects which allow the subsequent identification of their
effect on the domain structure. As a model system, one
might regard an epitaxial thin magnetic film on a substrate
with a predefined defect structure, e.g., a regular array
of step edges. In order to visualize the domain structure
by means of the magneto-optical Kerr effect the use
of Co-based ultrathin magnetic films with perpendicu-
lar anisotropy and large domain sizes is advantageous
[1,3–8]. In the following, we show that by using vicinal
MgO(111) substrates for ultrathin Pt�Co�0.3 nm��Pt
heterostructures, characteristic anisotropic domain shapes
are obtained which can be explained and modeled as being
caused by the regular arrangement of step edges.

The Pt�Co�Pt�111� trilayers were epitaxially grown in a
high-vacuum system onto MgO(111) substrates by sequen-
tial dc magnetron sputtering from different targets. The
trilayers consist of a 4-nm thick Pt buffer followed by the
magnetic Co layer and a Pt capping layer with a thickness
of typically tCo � 0.3 nm and tPt � 1.8 nm, respectively.
Prior to growth, a high pressure polishing procedure was
applied yielding a highly ordered substrate surface and giv-
ing rise to long-range ordered film growth with lateral crys-
talline coherence lengths above 450 nm [9,10]. The rms
roughness of the individual layers as determined by x-ray
reflectivity measurements are sPt � 0.05 nm and sCo �
0031-9007�00�84(6)�1312(4)$15.00
0.2 nm, respectively. In order to obtain a well-defined
tilt of the substrate surface with respect to the MgO{111}
planes, a precise tolerance of the substrate holder during
the polishing procedure was introduced. The miscut val-
ues which can thereby be achieved vary between 0.5± and
1.5±. As a further consequence of the substrate treatment,
the surface shows a pyramidal shape with three facets of
equal tilt with respect to the (111) plane. These facets are
oriented parallel to the �112̄� directions of the MgO (see
Fig. 1).

The magnetization reversal of the samples was analyzed
using an optical polarization microscope in the polar con-
figuration. In Fig. 1 the dark regions represent the reversed
magnetic domains generated in a field of 2750 Oe which
was applied for 1 s. The domains reveal an anisotropic
shape whose actual form depends on the miscut facet the
domains are nucleating on. In contrast, for trilayers grown
on MgO(111) with negligible miscut the domains reveal
a circular (isotropic) shape, in accordance with previous
results for Co-Pt alloy films [6,8]. The origin of the
systematic anisotropic domain shape is given by the mi-
crostructure of the vicinal substrate surface. The time

FIG. 1. Superposed optical image of the film surface structure
(phase contrast mode) and the magnetic domain pattern (po-
larization mode) taken during a magnetization reversal process.
The scratches at the surface are due to MgO crystallites be-
ing abraded from the facet edges during the substrate polishing
process.
© 2000 The American Physical Society
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evolution of the magnetization reversal in any single facet,
as shown in Fig. 2, further elucidates this mechanism.
Starting from the nucleation sites, which appear to be hard
nucleation centers, the domains expand only along the
�2̄11� and the �12̄1� directions, giving rise to a typical tri-
angular domain shape throughout the whole facet.

In the following, we wish to develop a microscopic
description that contains the salient features of the influ-
ence of the microstructure on the magnetic domain-wall
movement. A surface miscut induces the formation of
terraces separated by step edges. The density of step edges
is determined by the magnitude of the miscut. The step
height can be monoatomic or, in the case of step bunching,
can comprise several unit cells of the substrate. The
presence of terraces results in a surface potential which
affects the diffusion of atoms deposited on the surface.
The Ehrlich-Schwoebel barrier [11] leads to an increased
reflection of the diffusing atoms on downward step edges
resulting in a net flux towards the upward step edges.
Thus, for coverages in the submonolayer regime and suffi-
cient mobility, this potential gives rise to the accumulation
of adatoms in the vicinity of the step edges and a depletion
towards the middle of the terraces. In the present case,
a magnetic Co monolayer is deposited onto a single-
crystalline Pt buffer whose surface ideally is a replica
of the substrate’s surface microstructure. Following the
arguments given above, the concentration of Co atoms is
significantly enhanced at the step-edge positions (as
schematically shown in the inset of Fig. 3). This modu-
lation of the Co-layer thickness results in a decrease of
the effective anisotropy constant Keff of the magnetic
film in the vicinity of the steps. Since the spins at the
center of a Bloch-like domain wall are aligned parallel
to the film plane, the system’s energy is minimized if
the walls are located at the step edges. Consequently,
the thickness gradient of the Co layer results in an

FIG. 2. Kerr image on one miscut facet of the magnetization
reversal in a field of 2750 Oe. Five images are superposed
which were subsequently recorded every 0.25 s. They show the
time evolution of the reversed magnetic domains.
energy gradient for the domain-wall position across
the terraces. This explains qualitatively the observed
anisotropic movement of the domains walls antiparallel
to the miscut direction. In excellent agreement with the
observations made for Co growth on Pt(111) [12], we
observe anisotropic domain-wall movement only for Co
coverages below three monolayers up to which thickness
Co grows layer by layer. For Co thicknesses larger
than three monolayers, strain relaxation causes three-
dimensional growth, and circular magnetic domain shapes
are observed.

For a more quantitative explanation of the anisotropic
domain shape, further arguments are needed which will be
given by a numerical treatment. This numerical simula-
tion is based on a model which describes the perpendicu-
lar spins of the ferromagnet by a mesoscopic nonconserved
order parameter f��r, t�. The Ginzburg-Landau Hamilto-
nian of this Ising-like system reads as [13]

H �
Z

d3r

µ
2

a
2

f��r , t�2 1
b
4

f��r , t�4

1
J 0

2
�=f��r, t��2
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∂

. (1)

Here, the order parameter interacts with an external homo-
geneous magnetic field H and a static random field B��r�
representing the system’s disorder. J 0 . 0 denotes the
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FIG. 3. Numerical simulation (80 3 150 points) of a magnetic
domain wall in the pinned state. The upper graph shows the
magnetic system for an arbitrary fixed position x along the step
edges. The lower curves show the spins and the pinning fields
averaged over all x values. In the inset the relationship between
the thickness gradient of the magnetic layer and the resulting
pinning field g is shown schematically.
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coupling constant between the spins. Supplementing for-
mer isotropic treatments [14], we introduce an additional
static field G��r� which reflects the effect of the step edges
on the magnetic system. The evolution of the order pa-
rameter is assumed to follow a Langevin dynamics at zero
temperature:

g
≠f��r , t�

≠t
� 2

≠H

≠f��r, t�
, (2)

with the system’s relaxation time proportional to g. An
application of this model is also possible at finite tempera-
tures, since the arguments given above do not depend on
the influence of thermal energies on the domain shape.

For the numerical simulations the continuous fields are
rescaled appropriately and discretized to a lattice ��l	 which,
for simplicity, we choose to be square with a lattice con-
stant c [14,15]. In our case, the discrete version of the
Hamiltonian takes the form

H �
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where �l0 are next neighbors to �l, and z is the number
of next neighbors. The order parameter f is rescaled
(u0 � a � b, J � J 0�c2) and is now given by the “soft
Ising spins” S�l . Integration of the accordingly modified
relaxation Eq. (2) yields a set of difference equations for
every spin,

S�l�t 1 Dt� � S�l�t� 1 Dt

∑
2u�S2
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�t� 2 1�S�l�t�

1
X
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∏
,

(4)

with the rescaled parameters t � Jt�g, u � u0�J, h �
H�J, b�l � B�l�J, and g�l � G�l�J. The quenched noise of
the system is assumed to have a cutoff white distribution;
i.e., the rescaled random fields �b�l	 take on values in an
interval �2p, p� with equal probability. In total, three
parameters enter in the simulation for the isotropic case
(without step edges): the “coupling” u, the external field
h, and the maximum value of the pinning p.

In the anisotropic case, this has to be augmented by an
appropriately chosen form of the fields �g�l	. Following the
explanation for the anisotropic domain-wall propagation
given above, the functional form of the step-edge induced
pinning field g is modeled for the nth step line by the real
part of a Lorentz-like function,

gn�y� � 2d
2G�y 2 yn�

�y 2 yn�2 1 G2 , (5)

where yn 2 w�2 , y # yn 1 w�2. Here, yn is the y
coordinate of the nth step and w is the vertical distance
between the steps. The minimum of the Lorentz curve
1314
corresponds to the accumulation of Co atoms in the vicinity
of a step edge which affects the magnetic domain walls as
a pinning potential. The height of the pinning potential is
determined by d and its width is given by G. In analogy
to the maximum value p of the random pinning field, d
enters as a further simulation parameter. It determines the
magnitude of the pinning field in the vicinity of the step
edges.

In the following numerical simulations we show that
the introduction of the pinning field g leads to an effec-
tive anisotropic pinning behavior of the system even for
small values of d. The choice of the rescaled isotropic pa-
rameters (h � 0.1, u � 0.9, and p � 0.4) is based on the
optimization for the isotropic problem. These isotropic
simulations yield domain-wall morphologies which exhibit
scaling properties identical to those experimentally ob-
served for circular domain patterns. The result of these
investigations will be published elsewhere. The maximum
value of the pinning field g is chosen to be slightly smaller
than the maximum random field �d � 0.25�.

Figure 3 shows the result of a two-dimensional (80 3

150 lattice sites) simulation in which the step edges are
arranged in rows along the x direction with a vertical dis-
tance of w � 20 lattice points. The simulation shows the
magnetic system in the pinned state; i.e., the domain wall
does not change its position, even for long iteration times.
In the upper graph the spin function S and the sum of the
pinning fields b 1 g are drawn as a function of y for an
arbitrarily chosen fixed x position along the step edges.
The jaggedness of the random field b conceals the field g
so that the pinning fields do not show a significant peri-
odicity. The reason why the system remains in the pinned
state only becomes apparent if S and b 1 g are averaged
over all x (lower graph in Fig. 3). In this case the peri-
odic structure of g becomes visible and the domain walls
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FIG. 4. Simulation of the domain-wall propagation. The dot-
ted lines indicate the centers of the additional pinning field g
which represents the influence of the step edges on the mag-
netic system.
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FIG. 5. Digitized images during a magnetization reversal in a
field of 2660 Oe. The domain-wall positions were recorded
every 0.5 s.

are located at the minima of the pinning potentials. Ap-
parently, due to their elastic properties the magnetic do-
main walls are trapped by elongated structures even if the
pinning forces are weaker than the random pinning fields
arising from disorder. This elastic property of the domain
walls is a direct consequence of the spin-spin interaction.
The assumption of a rowlike distribution of the step edges
alone cannot explain the anisotropic shape of the domains.
In order to reproduce the observed domain shapes in the
simulation, the actual planar arrangement of the step edges
on MgO has to be implemented in Eq. (5). It is well known
that the annealed surface of MgO(111) splits up into �100	
facets [16,17]. Therefore, a vicinal (111) surface will form
step edges parallel to �100�. The projections of these �100�
directions onto the substrate surface are parallel to �2̄11�.
This faceting of diagonal step edges is in analogy to the
formation of macroscopic miscut facets shown in Fig. 1.
Consequently, the faceting of the step edges is modeled
for the simulation by a fishbonelike arrangement of step
lines forming an angle of 120± (dotted lines in Fig. 4).
The coordinates of the nth step edge is then determined by
yn�x� � y0 2 nw 2 jx 2 x0j tan30±.

Figure 4 shows the result of a simulation on a 500 3

500 lattice with this type of step-edge arrangement. The
simulation shows all relevant features of the experimen-
tally observed domain patterns (Fig. 5): The domain walls
have two preferential directions for propagation, giving
rise to the characteristic triangular domain shape. This is
caused by the diagonal “channels” between the step lines
in which the domain wall can move easily. The edge of
the topmost channel works as a guiding line for the do-
main-wall movement. At some position (marked with an
arrow in Fig. 4) the domain wall overcomes this line and
enters the adjacent channel. These “protuberances” are
also seen in the measurements (marked positions in Fig. 5).

In conclusion, we showed that the magnetic do-
main-wall motion in ultrathin films with perpendicular
anisotropy is very sensitive to elongated pinning structures
such as substrate induced step edges. The observed
anisotropic wall propagation is due to a thickness gradient
of the magnetic layer in the vicinity of the step edges. The
characteristic triangular domain shapes directly emerge
from the actual planar arrangement of the steps. The
domain-wall evolution can be simulated successfully using
a Ginzburg-Landau-like “soft spin model” augmented by
an additional pinning term which describes the effective
pinning force due to a thickness gradient of the magnetic
layer.

The authors wish to thank H. J. Elmers for fruitful dis-
cussions.
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