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Vortex Entanglement in Disordered Superconductors
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Vortex entanglement and pinning in multiply connected disordered superconductors are studied. It is
shown that the winding of vortices around repulsive obstacles is greatly enhanced by quenched columnar
disorder and suppressed by point disorder, compared to the clean case. This leads to an additional
contribution to the effective pinning force acting on vortices, which, unlike the conventional mechanisms
of pinning, grows with temperature.

PACS numbers: 74.60.Ge, 74.62.Dh
The effects of interplay between thermal fluctuations
and static disorder in the superconducting mixed state have
been a subject of intensive studies in the past few decades.
The surge of interest in this problem was prompted by the
discovery of high-temperature superconductors (HTSC),
whose peculiar material properties are such that the ther-
mal fluctuations are capable of melting the Abrikosov
vortex lattice in a significant part of the H-T phase dia-
gram [1]. The matters are further complicated by a highly
anisotropic crystalline structure of HTSC materials and the
presence of quenched disorder of all sorts, giving rise to
a rich phase diagram and non-trivial thermodynamic and
transport properties (for a review, see Ref. [2]). Apart from
a pure scientific interest, the studies of the mixed state
properties of hard type-II superconductors (all HTSC ma-
terials fall into this category) are important from the view-
point of technological applications, which usually require
high critical currents and, therefore, large pinning forces.

Generally, the pinning of vortices at extended, i.e.,
linear or planar, defects (columnar pins, dislocations,
twinning planes, or grain interfaces) is more effective than
the collective pinning by pointlike impurities or vacancies.
However, in all the cases, the strength of pinning rapidly
diminishes as temperature increases. For instance,
the localization length of a single flux line at an at-
tractive columnar defect of radius r0 and the binding
energy U0 grows exponentially with temperature T :
lloc�T � � r0 exp��T�T��2�, where T� � r0

p
U0 [3]. As a

result, at T . T� a flux line is virtually delocalized and
can move freely. This leads to increasing the transverse
flux flow resistivity in the mixed state, which is an obvious
disadvantage for applications.

In this Letter, we study a different mechanism of pin-
ning, related to the entanglement of vortices in super-
conductors with multiply connected geometry. The most
distinct feature of this mechanism is that its strength in-
creases with temperature. Qualitatively, if repulsive cylin-
drical obstacles are present in a superconductor, the flux
lines may get entangled with them, just because of the
thermal fluctuations of vortex positions in the plane per-
pendicular to the applied magnetic field. The entanglement
prevents vortices from moving freely under the action of
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Lorentz force and gives rise to a significant “topological”
contribution to the effective pinning force, which is deter-
mined, in a slab of thickness L, by the number of turns n�L�
of a flux line around an obstacle (the winding number). A
similar mechanism works in flux liquids, where the mutual
entanglement of vortices substantially increases pinning in
the presence of a fairly small amount of disorder [4].

One possible experimental setup for studying the vortex
entanglement in multiply connected superconductors was
proposed by Nelson and Stern [5] (see Fig. 1). The den-
sity of flux lines trapped inside a bunch of densely packed
columnar defects can be made much higher than outside.
The vortex-filled tube thus presents a strongly repulsive ob-
stacle for the rest of the vortices, which form a flux liquid.
Another realization of repulsive obstacles is related to the
artificial creation of a rod with higher critical temperature
inside a superconductor, which would repel vortex cores.

The quantitative analysis of the vortex entanglement in
the superconducting mixed state is based on the observa-
tion [2] that the flux lines can be thought of as the elastic
strings stretched along the external magnetic field and sub-
ject to a pinning potential. If the displacement of a vortex
line due to thermal fluctuations or disorder is smaller than
the mean distance n21�2

y between the vortices (ny � B�F0
is the concentration of vortices, B is the magnetic induc-
tion inside the sample, and F0 is the flux quantum), then
the mutual entanglement can be neglected, and one deals
with a single-vortex problem. The energy of a single flux
line is given by

E�r�z�� �
Z L

0
dz

Ω
el

2

µ
dr
dz

∂2

1 U���r�z�, z���
æ

, (1)

where el � �F0Hc1��4p is the line tension (Hc1 is the
lower critical field), and U is the random potential, de-
scribing the interaction with point or columnar disorder
(in the latter case, U does not depend on z). The vortex
partition function can be written as

Z�r, r; L� �
Z

D r�z�e2bE�r�z�� �
X̀

n�2`

Zn�r, r; L� ,

(2)
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FIG. 1. Superconducting slab with a repulsive cylindrical ob-
stacle of radius R0 (shaded area), and point impurities (a) or
columnar defects (b) in the bulk. An Abrikosov vortex (thick
curve) is entangled with the obstacle.

where the path integral is taken over all trajectories r�z�
such that r�0� � r�L� � r, and Zn is the constrained par-
tition function of a vortex winding n times around the
obstacle:

Zn �
Z

D r�z�d
µ
n 2

1
2p

Z L

0
dz

du

dz

∂
e2bE�r�z��, (3)

u�z� is the angle between the radius-vector r�z� and some
fixed direction in the transverse plane. The mean-square
winding number �n2�L�	 �

R
dn n2P �n, L� is related to

the normalized winding probability distribution P �n, L� �
�
R

dr Zn�r, r; L� �
R

dr Z�r, r; L��21	, where the averaging
over quenched disorder is implied.

Expressing the d function in Eq. (3) as an integral over
an auxiliary variable f, and considering Eq. (1) as a Eu-
clidean action in 2 1 1 dimensions, the vertical coordi-
nate z playing the role of time [1], the path integral on
the right-hand side of Eq. (3) is recognized as the Fourier
transform Zn�r, r; L� � �1�2p�

R
df e2ifnGf�r, r; L� of

the Green function of a 2D quantum particle with Hamil-
tonian

H �
T

2el
�2i= 2 A�2 1

U�r, z�
T

. (4)

Here Au � f�2pr is the vector potential of a fictitious
solenoid placed inside the obstacle and carrying magnetic
flux f. This way of imposing topological constraints dates
back to the seminal works of Edwards [6]. In addition, the
vortex partition function must satisfy the Dirichlet bound-
ary condition at the surface of an impenetrable obstacle:
Zjr�R0 � 0 [7].

In a clean superconductor [U�r, z� � 0], a flux line can
be thought of as the world line of a 2D random walker,
wandering in a plane with a removed disk of radius R0.
The winding number probability distribution for such a
system is known to be Gaussian: P �n, L� � exp�2x2�,
with x � n� lnL [8]. Therefore,

�n2�L�	 � ln2 L
l

. (5)

Here we took into account the fact that the ultraviolet cutoff
for the directed random walk description of flux lines is
provided by the London penetration depth l.

In the case of point disorder, a flux line represents the
trajectory of a Markovian random walk with the mean-
square displacement growing as �r2�L, T �	 � L2n , where
n � 0.6 in 2 1 1 dimensions [2]. Therefore, it is rea-
sonable to argue that, at scales larger than the collective
pinning (or Larkin) length Lc, where the disorder-induced
wandering dominates [2], the properties of flux lines are
statistically equivalent to those of Lévy flights [9] with in-
dex m � 1�n. This analogy allows one to calculate the
vortex entanglement using the method of Ref. [10]. The
mean-square winding number variation for a trajectory of
length l after one elementary step of length dl � Lc is
given by ds 
 ��dn�2	 �

R
dd n�dn�2P�dn�, where the

distribution function is

P�x� �
Z

dr dr0 d
µ
x 2

1
2p

arccos
rr0

rr 0

∂

3 fm�r, l�fm�r0 2 r, dl� .

Here fm�r, l� � �1�4p2�
R

dk exp�ikr 2 jkjml� is the
Lévy distribution function. Calculating the integrals, we
obtain ds�l� � dl�l (at m , 2). The angular variations
at different steps are statistically independent, so that the
total winding number variance after L�Lc ¿ 1 steps is
given by

�n2�L�	 �
Z L

Lc

ds�l� � ln
L
Lc

. (6)

Some scaling and numerical arguments in favor of a loga-
rithmic dependence of the vortex entanglement in a white-
noise potential have been put forward in Ref. [11]. The
result (6) is valid as long as the typical displacement of a
single vortex (�Ln) is smaller than n21�2

y .
Now let U�r� � U0

P
i d�r 2 ri� be the potential of

columnar defects parallel to the external field, whose po-
sitions ri are distributed uniformly, according to the Pois-
son law with mean density r. This potential can be either
attractive or repulsive. The former possibility is realized
in HTSC where columnar defects can be artificially cre-
ated by irradiating the material with high-energy ions [12].
Such defects are of the size of the order of 50–70 Å (which
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is comparable with the vortex core diameter) and tend to
localize vortices in their vicinity. As we shall see shortly,
the sign of U�r� is not important for us, as long as the spec-
trum of the Hamiltonian (4) is bounded. For this reason,
we assume that U0 . 0, thus putting the lower spectrum
boundary at zero energy.

The constrained partition function (3) can be represented
in the following form:

Zn�r, r; L� �
Z

dE e2EL
Z 2p

0

df

2p
eifnN�E, r; f jU� ,

(7)

where N�E, r; f jU� is the local density of eigenstates of
the Hamiltonian (4) in a given configuration of disorder.
At large L, the main contribution to the integral on the
right-hand side of Eq. (7) comes from the energies near
the lower spectrum boundary, where the eigenfunctions are
localized [13]. In this limit, we obtain from (7)

�n2�L�	 � 2
≠2

≠f2

ø
ln

Z
dE e2ELN�E, fjU�

¿ Ç
f�0

� 2
≠2

≠f2 ln
Z

dE e2ELN�E, f�
Ç
f�0

, (8)

where N�E, f� �
R

�dr�V� �N�E, r; f jU�	 is the
average total density of states (DoS) (V is the sys-
tem area in the plane perpendicular to the external
field). To prove the last equality, one could use
the replica trick [�lnx	 � limm!0��xm	 2 1��m] and
notice that there are no level correlations in the local-
ized phase, so that �N�E1, f jU� · · · N�Em, f jU�	 !
N�E1, f� · · · N�Em, f�.

The asymptotic behavior of the mean-square winding
number at large L is thus determined by the asymptotics
of the average density of states N�E, f� at small E. This
asymptotics (“Lifshitz tail”) can be calculated by extend-
ing the well-known argumentation of Lifshitz [14] to the
case of a nonzero magnetic flux. The basic idea is that
the low-energy behavior of DoS is dominated by the con-
tribution from large regions in real space which are free
of defects. In the absence of solenoid, the low-lying
eigenvalues for the wave functions localized inside such
a region of area A � pR2 coincide with the energy lev-
els of a quantum particle in a two-dimensional potential
well of radius R with infinitely high walls. In particular,
the ground state energy is given by E�R� � a2T�2elR2

[where a � 2.405 is the first root of the Bessel func-
tion J0�x�] [15], so that A�E� � pa2T�2elE. On the
other hand, the probability to find a clean region of area
A is exponentially small: p�A� � exp�2rA�, thus giv-
ing N�E� � p�A�E�� � exp�2pa2rT�2elE� [14]. In the
presence of a cylindrical obstacle of radius R0 threaded
by a solenoid, the flux dependence of the low-energy tail
of DoS can be derived from that of the ground state en-
ergy in an annular potential well. The inner radius of the
well is R0, while the outer one is determined by the size
of an optimal fluctuation in the concentration of defects:
1306
R � �a2T�2elE�1�2 ¿ R0. At small f, the first order
perturbative correction to E reads

dE�f� �

RR
R0

r dr
Tf2

8p2el r2 c
2
0 �r�RR

R0
r dr c

2
0 �r�

. (9)

Here c0�r� is the ground state wave function in the absence
of solenoid, satisfying the boundary conditions c0�R0� �
c0�R� � 0:

c0�r� � J0

µ
ar
R

∂
1

p

2

µ
ln

R
R0

∂21

Y0

µ
ar
R

∂
,

where J0�x� and Y0�x� are the Bessel functions. Cal-
culating the integrals in Eq. (9), we obtain dE�f� �
b0f2E ln�E0�E�, where b0 � �12p2a2J2

1 �a��21, and
E0 � a2T�2elR

2
0 . To keep the ground state energy

fixed, one has to compensate for this correction by
increasing the area of a clean region: dA�E, f� �
�pa2T�2elE2�dE�f�, so that the DoS at a fixed energy
decreases: N�E, f� � exp�2r�A�E� 1 dA�E, f���.
Finally, we obtain, with exponential accuracy,

N�E, f� � N�E, f � 0� exp

Ω
2b

rT
elE

ln
E0

E
f2

æ
,

(10)

where b � pa2b0�2 � 0.049. The heuristic arguments
leading to Eq. (10) can be confirmed by a rigorous analy-
sis whereby the optimal fluctuations in the distribution of
defects able to sustain the eigenstates with very low en-
ergy have been shown to correspond to the saddle-point
solutions (instantons) in the field-theoretical formulation
of the problem [16,17]. Calculating the integral over E in
Eq. (8) by the steepest descent method, we finally obtain

�n2�L�	 � c

µ
rTL
el

∂1�2

ln
TL

relR
4
0

, (11)

where c � �b�a�
p

2�p � 0.016. The difference between
the asymptotic winding number distributions of closed
[r�0� � r�L�] and open [r�0� fi r�L�] trajectories is
determined by the coordinate dependence of the Green
functions of the Hamiltonian (4), which affects only the
preexponential factors and is therefore irrelevant at large
L. To estimate the limits of applicability of Eq. (11), one
has to compare the typical distance of wandering at length
L with the mean distances r21�2 between the defects and
n21�2

y between the vortices. The mean-square displace-
ment of a single vortex line due to thermal fluctuations
can be derived using the analogy with a 2D random walk
in the presence of static traps: �r2�L, T �	 � �TL�rel�1�2

[18,19]. As a result, we obtain

elF0

BF

, TL ,
elF0

BF

µ
BF

B

∂2

, (12)

where BF � rF0 is the so-called matching field [2],
which is typically between 1 and 5 T in experiment.
The first inequality guarantees that one deals with a
many-defect problem, while the second one allows us to
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neglect the intervortex interactions and can be most easily
satisfied in the vicinity of Hc1. It follows from Eq. (12)
that there exists a crossover length Lcr � elF0�BFT ,
which separates two different regimes of entanglement. At
L , Lcr , it is possible to neglect completely the influence
of columnar disorder, and the typical winding number
grows logarithmically with L; see Eq. (5). In contrast, at
L . Lcr the dominant contribution comes from the DoS
“tails,” and the winding number grows much faster.

In conclusion, we found that quenched disorder strongly
affects the topological entanglement of magnetic flux
lines in multiply connected superconductors. While in the
clean case the winding number grows logarithmically with
the system size: �n2�L�	clean � ln2L, a point disorder
increases vortex wandering and therefore suppresses
entanglement: �n2�L�	point � lnL. In contrast, a columnar
disorder tends to confine vortices inside the optimal
fluctuations in the distribution of defects, thus decreasing
transverse wandering and substantially increasing entan-
glement: �n2�L�	column � L1�2 lnL.

The topological contribution to the effective pinning
force can be estimated as follows. If a vortex is subject
to an external Lorentz force, it can disentangle itself from
an obstacle by a complex movement (“reptation”) of the
vortex line ends in the top and bottom planes of a sample.
However, the characteristic times of disentanglement in
this case grow faster than exponentially with the sample
size [4], so that, in reality, the dominant contribution to the
depinning rate might come from the “cutting” of vortex
cores through the obstacle. The energy barrier for such a
process is proportional to the winding number: Ecut�n� �
E1jnj, where the energy cost of a single act of cutting is of
the order of the creation energy of a closed vortex loop of
radius R0: E1 � 2pR0�F0�4pl�2 ln�min�R0, l��j�. The
critical current density jc can then be estimated by balanc-
ing Ecut against the energy gain due to the action of Lorentz
force fL � F0jcL�c. Therefore,

jc

j0
�

j

L
��n2�L�	�1�2, (13)

where j0 � cF0�l2j is the critical pair-breaking current
density (j is the correlation length). For instance, in
the presence of columnar defects [see Eq. (11)] the ra-
tio (13) can be represented as jc�j0 � �Lwind�L�3�4 lnL,
where Lwind � �rTj4�el�1�3 is the characteristic length
scale related to entanglement. Although jc decreases with
the sample size, the topological mechanism of pinning be-
comes increasingly effective as temperature grows and may
dominate the conventional pinning (due to the localization
of vortices in the effective potential wells created by de-
fects) in sufficiently thin samples at high temperatures.
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