
VOLUME 84, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 7 FEBRUARY 2000

1244
Topology, Phase Instabilities, and Wetting of Microemulsion Networks
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We predict theoretically the gradual formation of fluctuating, connected microemulsion networks from
disconnected globules as the spontaneous curvature is varied, in agreement with recent direct measure-
ments of these topological transitions. The connectivity induced instability together with emulsification
failure of the network relate the ultralow tensions and wetting transition to the changing microstructure.

PACS numbers: 64.75.+g, 68.10.Cr, 82.70.–y
The interplay between structural energy and entropy that
characterizes the self-assembly of microemulsions (ME)
leads to an extremely rich variety of geometries. Among
these, the multiply connected sponge, in which the water
and oil domains are both continuous, has been extensively
studied [1]. These bicontinuous structures are observed
around the inversion temperature, T̄ , where the mean cur-
vature of the surfactant film vanishes. In the very same
region, ME systematically exhibit striking thermodynamic
features, especially the critical, reentrant two-phase separa-
tion and the subsequent formation of a three-phase region
[2], where the ME is composed of a surfactant-rich lens
that generally wets the interface between the water-rich
and oil-rich phases only partially [3]. The behavior of the
ultralow tensions at these three interfaces as a function of
temperature exhibits a wetting transition, where the lens
spreads all over the oil-water interface [4]. Recent ex-
perimental studies by Strey and Sottmann on 19 different
non-ionic surfactant ME have shown that both the phase
diagrams [5] and tensions [6] obey similar universal scal-
ing properties.

Previous theories [7] that focused on the symmetric
sponge, where the amphiphilic random interface has equal
probabilities to curve towards oil or water, could not re-
produce the critical, reentrant phase behavior nor the sub-
sequent criticality near the three-phase region. Motivated
by the unexplained reentrance phenomena, we proposed a
model for ME based on thermally fluctuating asymmetric
bicontinuous networks, whose building blocks are cylin-
ders interconnected by junctions [8]. The cylinders are
stabilized by the finite spontaneous curvature, c0, above or
below T̄ [9]. Recently, these networks with their three-fold
“Y-like” junctions have been directly observed by trans-
mission electron microscopy (TEM) [10] (Fig. 1a).

In this paper, we show how a unified explanation of the
connection between microstructure and interfacial proper-
ties naturally emerges from the fluctuating network model.
It consistently predicts the topological transitions of the
ME with decreasing spontaneous curvature, c0 (which is
controlled by temperature in non-ionic systems): The ME
evolves from spherical globules to long cylinders of ra-
dius R that subsequently interconnect by threefold junc-
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tion, leading to the formation of the bicontinuous network.
We introduce the concept of emulsification failure (EF)
of networks that allows for the optimization of the local
curvature energy through rejection of the excess internal
phase. In the region of the reentrant phase separation the

FIG. 1. (a) The formation of a threefold “Y-like” junction.
The theoretical shape of the junction, as calculated by numeri-
cal minimization, has a lamellar core, while the cylinder ter-
minates with an enlarged spherical end cap. The cryo-TEM
image of the Habon G system shows the semiflexible network
formed by such junctions [A. B. Grosswasser and Y. Talmon (to
be published)]. (b) The phase stability diagram of spheres (S),
cylinders (C), lamellae (L), and the network (N) made of inter-
connected cylinders. Note the series of topological transitions,
S ! S 1 C ! C ! N as c0R decreases.
© 2000 The American Physical Society
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global, large-scale network topology is optimized via ad-
justment of the typical distance, L, between its junctions.
The appearance of the three-phase coexistence of ME with
almost pure oil and water phases, when the EF and the
reentrance loops overlap, therefore signifies the capability
of the system to simultaneously tune its structure on both
local and global length scales. We trace the progression
of the microstructure from the curvature-governed dilute
network, L ¿ R � c21

0 , to the strong fluctuation regime,
where the typical distance between junctions is compa-
rable with their size, c21

0 ¿ L � R, and they form a dense
sponge. We predict the consequent dependence on c0 of
the interfacial tension and the resulting wetting transition
in agreement with experiment.

We first discuss the sequence of topological transitions
that ME show on the way to the formation of bicontinu-
ous networks. At high spontaneous curvature, far from T̄
(lower part of the phase diagram in Fig. 1b), one can ne-
glect the thermal fluctuations. The dominant contribution
to the free energy (per unit volume) is the local elastic
curvature energy, fe � fr23E�r�, where f is the volume
fraction of the inner phase (oil or water), r � c0R is the
ratio of the radius to the optimal radius of curvature; E�r�
is the scale invariant curvature energy. Previous studies
have dealt with the details of the phase diagram in this
regime and we describe only the main results [9]: In a
single phase, the radius is determined by the volume to
surface ratio R � 2d�f�fs�, where the volume fraction of
the surfactant is fs and d is the surfactant chain length (R
is the cylinder radius, 2�3 of the sphere radius). The cur-
vature energy of cylinders is Ec�r� � k�1 2 4r�, where
k is the bending modulus. For spheres, the curvature en-
ergy, Es�r� � 8

9 �2k�1 2 3r� 1 k̄�, includes a topological
contribution proportional to the saddle-splay modulus, k̄

(Es and Ec are measured relative to the curvature energy
of lamellae El � 0). Comparing the energies of the three
possible local geometries, one finds that lamellae are op-
timal in the symmetric regime r ,

1
4 (Fig. 1b). As r in-

creases, there occurs a transition to cylinders, followed by
a transition to a region where they coexist with spheres,
and finally to a pure phase of spheres. When r is further
increased, the free energy becomes unstable with respect
to the EF phase separation: In this type of instability the
local curvature energy, E, is optimized by the rejection of
the excess, internal phase to optimize the curvature energy
and still obey the geometrical constraints set by composi-
tion [11,12]. Coexistence with an excess phase takes place
when the osmotic pressure of the material outside the glob-
ules vanishes. Expressed in the free energy f�r , f�, this
condition takes the form

f 1 �1 2 f�≠ff 1 �r�f�≠rf � 0 , (1)

or in the scaled form of the curvature energy, r≠rE � 2E.
The global structure of the ME, and especially the con-

nectivity transition from separate cylinders to the bicon-
tinuous network [13], is governed by thermal fluctuations.
The cylindrical local geometry [9] is determined by the
relatively large curvature energy while all other scales are
governed by the smaller free energy of fluctuations, rang-
ing from the stringlike undulation of the branches to the
longer wavelength translational entropy of the junctions
[8]. To estimate the free energy, consider the network
formed when the cylindrical branches are interconnected
by z-fold junctions that each cost an energy e (relative to
the cylinders) due to their curvature. The junctions be-
have as an ideal gas of defects in the sense that the en-
tropy is kBT per junction. The connectivity of the network
implies that the number density of junctions, rz , scales
nonlinearly with f, the network volume fraction, rz �
fz�2e2e [14] resulting in an effective attraction (for z $

3). For disconnected cylinders (z � 1), the ideal gas of
junctions is replaced by a gas of end caps of number den-
sity r1 that each cost curvature energy e1. This attrac-
tion between the junctions is the driving force leading
to the connectivity transition from cylinders to network
around the line r3 � r1. Apart from a logarithmic cor-
rection, this transition occurs when the energies of both
defects are equal, e 2 e1 � lnf. Figure 1a describes the
creation of a junction by the fusion of an end cap and a
cylinder with the topological cost of one handle; its con-
tribution to the integral over the Gaussian curvature is
k̄

R
K dS � 24pk̄. The difference in the mean curvature

contribution to the elastic energy, as calculated by numeri-
cal or variational minimization, scales approximately lin-
early with r , 2k

R
dS �H 2 c0�2 � 4pk�Pr 2 Q�, with

P � 2.14 and Q � 1.04 [15]. Junctions are optimal for
small values of the normalized spontaneous curvature due
to their flat lamellar core, while end caps are preferred
at larger r by their spherical cap (Fig. 1a). The resulting
transition line,

rn �
1
P

µ
Q 1

k̄

k
1

1
4pk

lnf

∂
, (2)

is depicted in Fig. 1b. We include the effects of short
wavelength fluctuations by the renormalized bending
modulus k�R� � 2�a�4p� ln�R�j�, and saddle-splay
modulus k̄�R� � �ā�4p� ln�R�j̄�; the correspond-
ing membrane thermal persistence lengths are j �
d exp�4pk0�a� and j̄ � d exp�24pk̄0�ā�, where k0
and k̄0 are the bare values of the moduli and the exponents
are a � 3, ā � 10

3 [16]. As the temperature approaches
the inversion temperature, T̄ , the curvature determined
length scale increases as R � 1�c0 � 1�jT 2 T̄ j, and k̄

increases logarithmically from its typical negative nomi-
nal value, k̄0 , 0. This leads to the expansion of the
network region (Fig. 1b), since higher values of k̄ favor
the saddlelike shape of the junction [17]. This theoreti-
cal prediction for the topological transition, spheres !
spheres 1 cylinders ! cylinders ! network, was re-
cently substantiated by direct cryo-TEM measurements of
non-ionic ME [10].
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We also anticipate that the network will be unstable with
respect to EF similar to that of globules. Motivated by
the experimental phase diagrams, which exhibit straight,
constant-r EF lines, we neglect the small effect of the en-
tropic contribution in the free energy of the network and
substitute in Eq. (1) only the dominant curvature contribu-
tion, fr23Ec�r�. Since this local energy is not sensitive
to connectivity, we obtain an identical result for both dis-
connected cylinders and networks for the optimal radius,

c0Rc �
2 ln�Rc�j� 2 1
4 ln�Rc�j� 2 1

. (3)

Rc has two limits; the curvature-governed regime �h �
c0j ø 1�, shown in Fig. 1b, Rc � 1��2c0�, while in the
entropy-governed regime (h � 1) it crosses over to Rc �
j. The suggested EF of cylinders followed by EF of net-
works, at lower values of c0 (Fig. 1b), is in accord with
experiment [10].

Apart from the local EF instability, which is also
common to globules, the bicontinuous network exhibits
a unique instability which directly results from its global
connectivity: The entropic part of the free energy is un-
stable to phase separation when the effective attraction,
2rz � 2fz�2e2e , overcomes the repulsion. This occurs
for values of the junction energy lower than a critical
value. Since fz�2 represents an effective attraction only if
the exponent is higher than linear (or z $ 3), we find that
this type of phase separation is unique to the connected
structures. Within the network picture, the reentrant phase
separation loops and the subsequent three-phase coexis-
tence emerge as direct results of the nonmonotonic behav-
ior of the junction energy, e�r� [8]. The curvature energy
of the junction exhibits a minimal value at r� [15] which
corresponds to a steep maximum of the attraction �e2e .
When the maximal attraction exceeds a critical value, the
ME phase separates into two networks of the same cylin-
drical radius r , which differ in the density of junctions,
as verified by experiment [10]. In the phase diagram, this
global instability is manifested by the appearance of a
two-phase coexistence loop bounded by two critical points
with a width that expands as Dr � jr 2 r�j � �1 2

h�h��1�2 [8] (h� refers to the double critical points where
the loops first appear).

As T approaches the inversion temperature, T̄ (where
h � c0 � 0), the loops expand until the increasing radius
of their cylinders make the networks unstable to the local
EF [Eq. (3)], and they reject the excess phase. The conse-
quent three-phase coexistence between two ME networks,
dense and dilute, together with an excess phase, is there-
fore the outcome of the simultaneous action of two dis-
tinct mechanisms for phase separation [12]; the local EF is
characterized by the radius of curvature, Rc [Eq. (3)], and
governs the coexistence of the network with its excess
phase, while the global attraction of the junctions is charac-
terized by the typical junction-junction correlation length
and governs the two-network coexistence. The experimen-
1246
tal phase diagrams [6] and tension curves [5] of many
non-ionic ME systems, in both the two-phase and three-
phase temperature regimes, exhibit a universal data col-
lapse. We suggest that the source of this universality
is purely geometrical; it is the connectivity of the ME
network that provides an inherent, material independent,
topological mechanism for attraction. Recent cryo-TEM
experiments [10] which prove our structural understanding
of the three-phase region, have also confirmed this theo-
retical proposal that indeed the bicontinuity is sustained
even up to the highly asymmetric regime where the reen-
trant phase separation first occurs.

In the emulsification failure (EF) scenario, the macro-
scopic interface between the ME and the excess phase is
a well-defined monolayer [18]. For this case, the experi-
mentally measurable, macroscopic interfacial tension, s,
is simply the free energy per unit area required to un-
fold a segment of the ME network to a planar monolayer
when the surfactant molecules are transferred to the newly
formed interface. Far from T̄ (h ¿ 1), the dominant con-
tribution is the elastic energy of the flattened interface due
to the difference between its curvature energy and the op-
timal value at the network EF. This scales as k�R�c2

0
and therefore vanishes at T̄ . An additional contribution
to the interfacial tension, which dominates in the strong
fluctuation regime, accounts for the loss of network en-
tropy, and this contribution determines the finite, ultralow
value of the tensions at T̄ , where the curvature contribution
vanishes. To estimate s we employ an expansion of the
reentrance loop and the EF around the critical end points
h � h3 � 0.9, where the three-phase body first appears,
with respect to the critical parameter Dh � 1 2 jhj�h3
[8]. The resulting values for the interfacial tensions be-
tween the two networks and their excess phase are (in units
of kBTj22)

s6�h� � k�Rc�h2 1 �j�Rc�2�A 6 BDh1�2� , (4)

where the constants A � 0.4 and B � 0.02 are found by
expansion of the network free energy. The higher value,
s1, corresponds to the dilute network phase, due to its
higher entropy (weaker repulsion forces), and the lower
value, s2, corresponds to the dense ME phase. In Fig. 2
the experimental curves s1�h� measured for 19 ternary
systems [6] collapse onto the universal theoretical predic-
tion of Eq. (4), when normalized by kBTj22, where j was
independently measured by small-angle neutron scatter-
ing (SANS) [19]. The data shows an asymptotic h2 be-
havior with a deep decrease, over 3 orders of magnitude,
to the ultralow nonvanishing value A 1 B � 0.42 at the
entropy-governed symmetric sponge.

By contrast, when the two coexisting phases are both
networks, the corresponding interface is a continuous tran-
sition layer separating regions where the branches have
the same radius but their local density (or the density of
junctions) differs. Near the critical end point where the
two networks merge, the thickness of this transition layer
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FIG. 2. The tension at the interface between the dilute network
and the excess phase, s1, of 19 non-ionic microemulsions [6]
collapse onto the scaling result (4) when plotted in units of
kBTj22, where j was measured independently by SANS [19].
The data crosses over from the curvature governed regime, h ¿
1, to the ultralow nonvanishing value at the symmetric sponge,
h ø 1 (inset).

increases. Recalling that the phase separation is along
constant-r tie lines, we consider only inhomogeneities of
the network volume fraction by adding a term propor-
tional to the square of its local gradient, �=f�2. Within
a mean-field approximation, this approach yields an inter-
facial tension that vanishes as sc � Dh3�2 at the critical
points. Following the experiments, we assume that the
boundary crosses over from a monolayer to a continuous
transition layer in the vicinity of T̄ (h ø 1), where the
thickness of the interface is comparable to the radius of the
cylinders, s2 � sc [18]. This is typical of the symmet-
ric sponge, where the global length scale becomes com-
parable to the size of the domains. The resulting tension
takes the following form:

sc�h� � �j�Rc�2�A 2 B�Dh3�2. (5)

The consequent balance of the three surface forces,
given by Eqs. (4) and (5), determines the wetting prop-
erties of the ME: A generalized Young’s law implies that
the contact angle of a nonwetting lens [3] of the dense
network phase floating between the dilute network and
the excess phase is cosu � �s2

1 2 s2
2 2 s2

c ���2scs2�.
The tensions of the symmetric sponge at h � 0 are almost
equal s1 � s2 � sc, and the theory predicts a lens with
a contact angle u � 2p�3 2 4B�

p
3 A � 0.63p . As the

ME becomes asymmetric and approaches the critical end
points, h � h3, the tension between the merging phases
vanishes as sc � Dh3�2, which is faster than the vanishing
of the difference between the tensions at the monolayers
separating these phases and the excess phase, that scales
as s1 2 s2 � Dh1�2. Consequently, close enough to the
critical end points, it is energetically favorable to avoid cre-
ating an interface between the dilute network and the ex-
cess phase by spreading an intervening layer of the dense
network phase. Consistent with experiment [4], we pre-
dict a wetting transition at the points, h � hW , which are
defined by the complete wetting condition, s1 � s2 1

sc, leading to hW �h3 � 1 2 2B�A � 0.9. In this vicin-
ity the theory predicts that the contact angle vanishes as
u � �hW 2 h�1�2. We note that the entropic residue of
the free energy due to the thermal fluctuations of the net-
work is essential to obtain this wetting transition as well
as the ultralow nonvanishing tensions at T̄ .
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