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Density-Functional Theory of Inhomogeneous Fluids in the Canonical Ensemble
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We present a density-functional approach for dealing with inhomogeneous fluids in the canonical
ensemble. A general relation is proposed between the free-energy functionals in the canonical and the
grand canonical ensembles. The minimization of the canonical-ensemble free-energy functional gives
rise to Euler-Lagrange equations which involve averaged Ornstein-Zernike equations of second and third
order. The theory is especially appropriate for systems with a small, fixed number of particles. As an
example of application we obtain accurate results for the density profile of a hard-sphere fluid in a closed
spherical cavity that contains only a few particles.

PACS numbers: 61.20.Gy, 68.45.–v
Density-functional theory (DFT) has become a fun-
damental technique for the study of classical fluids [1].
Highly developed approximations for the Helmholtz
free-energy functional have led to an accurate description
of the equilibrium microscopic properties of inhomo-
geneous fluids. Although DFT can be formulated in
the different statistical-mechanics ensembles [2], these
advanced approximations have been obtained in the grand
canonical ensemble (GCE). This means that the results
of all the existing DFT prescriptions correspond to open
systems, that is, in contact with a particle reservoir at fixed
chemical potential m. Therefore, as recently pointed out
by Evans [3], there is, as yet, no classical DFT approach
which works with a fixed number of particles. Usually
this is not a problem since the ensembles are equivalent in
the thermodynamic limit. However, for (small) systems of
finite size this equivalence does not hold and, according to
the external conditions, one must choose the appropriate
ensemble for the description of the system.

In this Letter we will consider the DFT treatment of
closed systems, with a fixed number of particles N , which
are described by the canonical ensemble (CE)—of course,
for N large a GCE-DFT approach is equivalent, and there-
fore we will focus our attention on very small values of N .
In particular, we will show how to use the existing accu-
rate GCE functionals to implement a CE-DFT of similar
accuracy, valid for a few particles. Apart from its intrinsic
interest, the availability of a CE-DFT is of great importance
for comparing with computer simulation results which are
commonly obtained for systems with a fixed number of
particles. The necessity of a CE functional has been re-
cently pointed out in a time-dependent DFT approach to
the relaxation dynamics of a system of interacting particles
[4]. Comparison of the time-dependent (GCE) DFT results
with Langevin simulations (carried with a fixed number of
particles) showed the importance of the fluctuation in the
number of particles in the relaxation. Earlier work for (in-
homogeneous) fluids in the canonical ensemble has been
carried out by Schlijper and co-workers [5] by using an ap-
proach inspired by the cluster variation method for lattice
systems. We note that, in contrast to the present approach,
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these authors were interested in obtaining integral equa-
tions for the distribution functions of fluids in the thermo-
dynamic limit and thus a delicate asymptotic analysis of
the results was required.

In the density-functional theory of the canonical en-
semble, the equilibrium density profile rc�r� of a closed
system with N particles and intrinsic free energy functional
Fc�r� is obtained by minimizing the functional

Fc�r� 1
Z

dr r�r�Vext�r� (1)

over all densities that can be associated with the external
potential Vext and that are normalized to the (integer) num-
ber of particles N . This constraint must be taken into ac-
count in the minimization, but, as pointed out in [2], in
principle we cannot directly use the Lagrange multiplier
technique since the constraint-free variation d�Fc�r� 1R

dr r�r�Vext�r� 2 l�
R

r�r� dr 2 N�� would require the
functional (1) to be defined for noninteger values of the
number of particles N . We can assume, however, that (1)
can be extended to noninteger values of N (e.g., by means
of an adequate interpolation) and then we obtain

dFc�r�
dr�r�

Ç
r�rc

1Vext�r� � l , (2)

where rc�r� denotes the equilibrium density of the fluid in
the CE and the Lagrange multiplier l must be calculated
from the constraint

Z
rc�r� dr � N . (3)

At this point, if we compare Eq. (2) with the usual
Euler-Lagrange equation in the grand canonical ensemble
dFgc�r��dr�r�jr�rgc 1 Vext�r� � m, where rgc�r� is
the equilibrium GCE density, we see that l plays the role
of the chemical potential. Furthermore, it is clear that any
minimizing scheme developed for the GCE can be applied
in the CE by replacing Fgc�r� by Fc�r� and choosing the
chemical potential m so that the density profile integrates
© 2000 The American Physical Society
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to N , i.e., so that the constraint (3) holds. In [6,7] the
density profile of a finite system with an average number
of particles �N	 in the GCE was derived. Following the
same route for the CE we obtain
rc�r� � N exp

∑
2bVext�r� 2 b

dFgc2ex�r�
dr�r�

Ç
r�rc

1j�r; �rc��
∏ ¡ Z

dr

3 exp

∑
2bVext�r� 2 b

dFgc2ex�r�
dr�r�

Ç
r�rc

1j�r; �rc��
∏

, (4)
where b � 1�kBT is the inverse temperature, Fgc2ex is
the usual excess (over the ideal-gas) free-energy functional
in the grand canonical ensemble, and

j�r; �r�� 
 2b
d�Fc�r� 2 Fgc�r��

dr�r�
. (5)

We note that the key difference between the DFT solution
for the density profile of a closed system with N particles
and that for an open system with average number of par-
ticles �N	 � N is the presence of the term j�r; �rc��—see
Eq. (3.27) in [7]. In order to evaluate j�r; �rc�� we require
an approximation for the difference Fc 2 Fgc. We pro-
pose

bFc�r� 2 bFgc�r� �
1
2

log2pD2�N; �r�� , (6)

where we have made explicit the functional dependence of
the mean square fluctuation of the number of particles in
the GCE, D2�N� 
 �N2	 2 �N	2. In Eq. (6), the chemical
potential is adjusted in Fgc so that it gives rise to the correct
(integer) value for the average number of particles. Equa-
tion (6) is proposed on the basis of the following standard
relation between the CE Helmholtz free energy Fc�N� and
the grand potential Vgc�m�, obtained via a saddle point ap-
proximation valid for large N [8]:

2bVgc�m� � 2bFc��N	� 1 bm�N	 1
1
2

log2pD2�N� .

(7)

Therefore, in Eq. (6) we are assuming that (7), which is
valid for the equilibrium free energies of a homogeneous
fluid, is also a good approximation for the functionals of
fluids with arbitrary inhomogeneous distributions, and this
is the key assumption in our present work.

From (6) and (5) we obtain

j�r; �rc�� � 2
1
2

1
D2�N ; �rc��

dD2�N; �r��
dr�r�

Ç
r�rc

.

(8)

The next step in our derivation is to express the mean
square fluctuation D2�N; �r�� as a functional of the den-
sity. This can be done by considering the density-density
correlation function G which in terms of the two particle
density r�2� can be expressed as [1,9]

G�r1, r2� � r�2��r1, r2� 2 r�1��r1�r�1��r2�

1 r�1��r1�d�r1 2 r2� , (9)
and hence it normalizes to the mean square fluctuation

D2�N� �
ZZ

G�r1, r2�dr1 dr2 . (10)

Moreover, defining the functional inverse G21 as

Z
dr2 G �r1, r2�G21�r2, r3� � d�r1 2 r3� , (11)

one has that G21 is essentially the two particle direct cor-
relation function c�2� [1,9],

G21�r1, r2� �
1

r�r1�
d�r1 2 r1� 2 c�2��r1, r1� , (12)

and Eq. (11) is the Ornstein-Zernike equation [10] written
in compact form [1,9]. If we now introduce the auxiliary
function

G�r� 

Z

G�r, r0� dr0, (13)

performing an integration in Eq. (11) and using (12) and
(13) we obtain

G�r� � r�r� 1 r�r�
Z

dr0 G�r0�c�2��r, r0� , (14)

which is nothing more than an averaged Ornstein-Zernike
relation. This equation allows us to obtain G�r� [and hence
D2�N� �

R
G�r� dr] in terms of r�r� and c�2� which is

itself a functional of r�r�—recall that

c�n��r1, . . . , rn� � 2b
dnFgc2ex�r�

dr�r1� · · · dr�rn�
. (15)

We remark that, following the above procedure, the mean
square fluctuation D2�N ; �r�� expressed as a functional of
an arbitrary density r�r� is obtained from the GCE func-
tional and using relations valid in the GCE. This is con-
sistent with the fact that the fluctuations in the number of
particles arise in the GCE. Finally, we require an appropri-
ate expression for the functional derivative of D2�N�. Per-
forming the functional derivative of the Ornstein-Zernike
relation (11) with respect to r�r� and exploiting the fact
that G and G21 are functional inverses, after some inte-
grations we obtain
1221
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d

dr�r�
D2�N ; �r�� �

µ
G�r�
r�r�

∂2

1
ZZ

G�r1�G�r2�c�3��r1, r2, r� dr1 dr2 . (16)
Note that Eq. (16) is essentially an averaged Ornstein-
Zernike relation for correlation functions of third
order [11].

Given a prescription for the free-energy functional of
a system in the GCE, Eq. (6) provides an approximate
expression for its CE counterpart, and Eq. (4) together
with (14) and (16) is the Euler-Lagrange equation for the
equilibrium density profile in the CE.

As an application of the theory developed in this work
we consider a hard-sphere fluid confined to a hard spheri-
cal cavity of radius Rcav so that, for hard spheres of diame-
ter s, the confining potential is given by

Vext�r� �

Ω
0, r , Rcav 2 s�2 ,
`, r . Rcav 2 s�2 , (17)

where r is the distance to the center of the cavity. This is
an ideal example to test the present CE-DFT. If one con-
siders a closed cavity, the system cannot exchange particles
with an external reservoir and the appropriate ensemble is
the canonical one. For very small cavities that can hold
only a few particles, significant differences from the GCE
results arise for the density. In addition, for these small
cavities and high packings the situation becomes highly
inhomogeneous, providing a demanding test for any DFT.
This model fluid was used in Refs. [6,7] to analyze the en-
semble dependence of the structure of a confined fluid
using an explicit expansion of the CE density profiles in
terms of GCE profiles. By contrast our present approach
evaluates the CE profiles directly from the CE-DFT. The
quality of the new theory is tested by comparison with the
simulation and theoretical results in Refs. [6,7].

Although we perform a CE-DFT study, we need the
GCE free-energy functional Fgc as input. For hard spheres
the exact form of Fgc is not known and one must resort to
one of the approximations available in the literature [1].
Among these approximate theories an excellent choice is
provided by the fundamental measure theory (FMT) of
Rosenfeld which has been shown to give accurate results
for a large variety of inhomogeneous situations [12], in-
cluding a hard-sphere fluid in a spherical cavity treated
in GCE [6,7]. Furthermore, the direct correlation func-
tions c�1�, c�2�, and c�3� required by the CE-DFT are readily
calculated from functional differentiation [Eq. (15)] of the
FMT functional. In this work we have used the Kierlik and
Rosinberg version of the FMT [13] which is completely
equivalent to the original FMT [14] and yields very simple
expressions for the direct correlation functions.

In this particular example of a hard-sphere fluid in a
spherical cavity, the spherical symmetry reduces the prob-
lem to dealing with quantities that depend only on the ra-
dial coordinate r . The solution of Eq. (4) for the density
profile rc�r� requires the simultaneous calculation of G�r�
via the averaged Ornstein-Zernike relation (14). This is
done by means of the usual iterative procedure employed in
GCE-DFT calculations. Since the direct correlation func-
tions can be expressed in terms of convolutions [13], and
(14) and (16) also involve convolutions, all the calcula-
tions for each iteration can be performed by means of fast
Fourier transform techniques.

In Fig. 1 we consider a cavity of radius Rcav � 1.85s

with N � 6, 8, and 10 particles. This choice of Rcav per-
mits the development of a peak of the density profile in the
center of the cavity (r near 0); in this zone important dif-
ferences between ensembles may arise. We present DFT
results for the density profile both in the CE and in the
GCE (for consistency, in this case we also use the FMT

FIG. 1. Density profiles of hard spheres in a spherical cavity of
radius Rcav � 1.85s. (a) N � 6, (b) N � 8, and (c) N � 10
particles. The lines represent the results of the CE-DFT (solid
line) and the GCE-DFT (dotted line). The symbols are CE
(circles) and GCE (squares) MC data from Refs. [6,7]. Note
the different vertical scales in the three figures.
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of Rosenfeld). For the purpose of comparison we also
plot simulation data of Refs. [6,7]. At moderate packings
[Fig. 1(a), N � 6], where the GCE-DFT yields very good
agreement with simulation, we observe that the results of
the CE-DFT are equally good, in spite of the reduced num-
ber of particles. Both GCE- and CE-DFT show the same
features with an accurate description of the contact zone
(r * 1) and a very slight underestimation of the simula-
tion data in the zone 0.6 & r & 0.8. The only difference
arises in the central peak where the CE-DFT slightly un-
derestimates the simulation data. For N � 8 [Fig. 1(b)]
the results of GCE- and CE-DFT are still very close to
simulation data. However, for N � 10 [Fig. 1(c)], the re-
sults of the GCE-DFT overestimate the central peak to
a large extent. This is due to the failure of the original
FMT of Rosenfeld to deal with the highly inhomogeneous
(quasi-zero-dimensional) situation that arises in the center
of the cavity. Recent modifications of Rosenfeld’s FMT
[15] are more successful for these 0D situations [7] but
are not used here since the calculations for the CE-DFT
become much more complicated. If we now turn our at-
tention to the CE-DFT result for this case of N � 10, sur-
prisingly, it remains accurate even in the central peak. The
explanation for this striking fact is that the central peak
is less pronounced in the CE than in the GCE and, for
N � 10 the FMT is still able to handle the inhomogene-
ity in the CE but not in the GCE. Note that the profile is
higher in the peak in the GCE due to contributions from
other values of N . In more extreme inhomogeneous situ-
ations the CE-FMT also fails, for instance, for N � 11
(not shown) it grossly underestimates the central peak in
the simulation data.

It is remarkable that, in general, where differences arise
between DFT and simulation, these show the same fea-
tures in both ensembles. This indicates that the present
approximation scheme for a DFT of the canonical en-
semble has essentially the same strengths and weaknesses
as its GCE counterpart, i.e., the accuracy of the CE-DFT
depends on the accuracy of the GCE free-energy func-
tional. Exceptions will occur for cases with a very low
number of particles (N � 1 or 2) where one should take
into account that the CE free-energy functional has been
obtained from an approximation valid to order 0�log N�
and some deviations are expected. In particular, one ob-
tains good results for low and moderate packings but these
results become worse (although still reasonable) for higher
packings.

In summary, we have shown that given a GCE free-
energy functional one can obtain an approximation for the
corresponding CE functional so that it is possible to per-
form DFT calculations in the canonical ensemble of the
structure of fluids with a few particles. As an application
of the CE-DFT we have considered a hard-sphere fluid
confined in a closed spherical cavity. We have found that,
except for a few extreme situations, this CE-DFT exhibits
the same good quality of performance as the correspond-
ing GCE theory.

It is a pleasure to thank Professor Robert Evans for valu-
able discussions and a careful reading of the manuscript.
We appreciate the financial support of the Dirección
General de Enseñanza Superior e Investigación Científica
of Spain under Grants No. PB 95-0934 and No. PB
98-0261. A. G. thanks TMR for financial support under
Grant No. ERBFMRXCT980171. F. L. R. thanks the
Ministerio de Educación y Cultura of Spain for financial
support.

*Present address: Departamento de Física da Faculdade
de Ciências and Centro de Física da Matéria Condensada,
Universidade de Lisboa, Avenida Professor Gama Pinto 2,
P-1649-003 Lisboa Codex, Portugal.

[1] R. Evans, in Fundamentals of Inhomogeneous Fluids,
edited by D. Henderson (Dekker, New York, 1992), p. 85.

[2] R. G. Parr and W. Yang, Density-Functional Theory of
Atoms and Molecules (Oxford University Press, Oxford,
1989).

[3] R. Evans, in New Approaches to Problems in Liquid State
Theory, edited by C. Caccamo et al. (Kluwer, Amsterdam,
1999), p. 153.

[4] U. Marini Bettolo Marconi and P. Tarazona, J. Chem. Phys.
110, 8032 (1999).

[5] A. G. Schlijper and R. Kikuchi, J. Stat. Phys. 61, 143
(1990); A. G. Schlijper and C. K. Harris, J. Chem. Phys.
95, 7603 (1991); A. G. Schlijper, Prog. Theor. Phys. Suppl.
115, 69 (1994); for a recent review on this approach and
related work see M. R. Bush, M. J. Booth, A. D. J. Haymet,
and A. G. Schlijper, Mol. Phys. 95, 601 (1998), and refer-
ences therein.

[6] A. González, J. A. White, F. L. Román, S. Velasco, and
R. Evans, Phys. Rev. Lett. 79, 2466 (1997).

[7] A. González, J. A. White, F. L. Román, and R. Evans,
J. Chem. Phys. 109, 3637 (1998).

[8] D. N. Zubarev, Nonequilibrium Statistical Thermodynam-
ics (Plenum, New York, 1974), Sec. 13.

[9] J. R. Henderson, in Fundamentals of Inhomogeneous Flu-
ids (Ref. [1]), p. 23.

[10] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Academic Press, London, 1986).

[11] L. L. Lee, J. Chem. Phys. 60, 1197 (1974).
[12] Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989); Phys. Rev.

A 42, 5978 (1990); J. Chem. Phys. 98, 8126 (1993).
[13] E. Kierlik and M. L. Rosinberg, Phys. Rev. A 42, 3382

(1990).
[14] S. Phan, E. Kierlik, M. L. Rosinberg, B. Bildstein, and

G. Kahl, Phys. Rev. E 48, 618 (1993).
[15] Y. Rosenfeld, M. Schmidt, H. Löwen, and P. Tarazona,

J. Phys. Condens. Matter 8, l577 (1996); Phys Rev. E 55,
4245 (1997).
1223


