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Detuned Raman Amplification of Short Laser Pulses in Plasma
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The recently proposed scheme of so-called “fast compression” of laser pulses in plasma can increase
peak laser intensities by 105 [Phys. Rev. Lett. 82, 4448 (1999)]. The compression mechanism is the
transient stimulated Raman backscattering, which outruns the fastest filamentation instabilities of the
pumped pulse even at highly overcritical powers. This Letter proposes a novel nonlinear filtering effect
that suppresses premature backscattering of the pump in a noisy plasma layer, while the desired ampli-
fication of a sufficiently intense seed persists with a high efficiency. The effect is of basic interest and
also makes it robust to noise the simplest technologically fast compression scheme.

PACS numbers: 52.40.Nk, 52.35.Mw
The recently proposed superradiant [1] or fast com-
pression [2] schemes can substantially increase the peak
laser intensities, which are currently achievable through the
chirped pulse amplification technique [3]. The peak laser
powers can also be substantially increased, while the sizes
and costs of ultrapowerful laser compressor amplifiers can
decrease remarkably. Ultrahigh energy, short laser pulses
might have a variety of applications [3,4].

The fast compression scheme [2] employs transient
stimulated Raman backscattering in plasma for pumping
a seed laser pulse to an extremely high intensity before
filamentation instabilities develop. These instabilities
grow very fast at high laser intensities. Yet, 100 PW�cm2

power densities and kJ�cm2 fluences of 1 mm wavelength
radiation can be achieved through fast compression, mak-
ing feasible compact devices for 100 PW kJ laser pulses.
No material except plasma is capable of withstanding the
huge electric fields of such laser pulses.

This Letter proposes a novel scheme for transporting a
laser pump to a seed pulse precisely through the amplify-
ing plasma layer. Although desirable technologically, this
direct pump path is complicated by the same extreme ef-
ficiency of Raman backscattering that makes possible the
fast compression. As the pump traverses the plasma layer
towards the seed pulse, fast Raman backscattering of the
pump by thermal Langmuir waves may lead to premature
pump depletion. The problem is aggravated by the fact that
the linear Raman backscattering instability of the pump
(responsible for unwanted noise amplification) has a larger
growth rate than its nonlinear counterpart (responsible for
the useful amplification of the seed laser pulse). Neverthe-
less, through an interesting nonlinear filtering mechanism
identified here, it appears to be possible to suppress the un-
wanted Raman backscattering of the pump by noise, while
not suppressing the desirable seed pulse amplification.

The filtering effect occurs because, in the nonlinear
regime, the pumped pulse duration decreases inversely pro-
portional to the pulse amplitude. The stronger the pulse,
the faster the pump depletion. The pulse frequency band-
width increases with the pulse amplitude, so that the non-
linear instability, as it grows, can tolerate larger and larger
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external detuning from the backscattering resonance. On
the other hand, the same bandwidth broadening slows
down the nonlinear instability by increasing the effective
internal detuning. Since the linear instability has a nar-
rower frequency bandwidth, the filtering of the desired
signal can be achieved by arranging for an appropriate
combination of detuning and nonlinear effects.

The proposed detuning scheme can be used to enable
laser intensities even exceeding the theoretical limit of the
original fast compression scheme. The idea is shown in
Fig. 1. As seen, the total external detuning, dvdetuning �
dv (which governs the pump backscattering), can be made
less than the plasma frequency detuning dvplasma � dvp

(which governs the pumped pulse forward scattering).
The larger plasma frequency gradient v0

p can suppress
Raman near-forward scattering of the pumped pulse into
the Stokes pulse downshifted by the plasma frequency.
The detuning gradient dv0 can be selected to suppress the
pump Raman backscattering by noise. Thus, an appropri-
ate combination of two different detuning mechanisms,
plasma density gradient and pump chirping, can remove
one of the major limitations on the output pulse intensities
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FIG. 1. Combined effect of plasma density gradient and pump
chirp on external detuning in Raman backward amplifier. The
detuning gradient is dv0 � v0

p 2 2v0
a, where v0

p and v0
a are

derivatives of plasma and pump frequencies at the pulse lo-
cation over distances from locations of exact resonance �z�
and pump front �2z�, respectively. The detuning gradient is
characterized below by dimensionless parameter q � 2�v0

p 2

2v0
a�c�vpvaa2

0 , where a0 is the nondepleted amplitude of pump
vector potential in units of mec2�e.
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in fast laser compressors by suppressing the Raman
near-forward scattering instability of the pumped pulse.
Remarkably, this can be achieved while still maintaining
a highly efficient amplification of the pulse.

The new scheme retains the major advantages of
conventional backward Raman amplification in gases: the
pumped pulse reaches intensities much higher than that of
the pump [5] and requirements on the pump laser quality
are very modest (due to the averaging over the pumped
pulse path of fluctuations in the pump intensity) [6].
Raman compression in gases, however, is made difficult
by the dominance of forward scattering [6], a problem
recently addressed in [7]. This Letter makes use of
some of the Raman techniques in gases such as chirped
pump [8]. It also employs plasma, where backward
scattering dominates [9]. However, here the backward
Raman amplification is transient rather than stationary,
i.e., the damping of the Langmuir wave may be neglected.
Compared to the results reported, e.g., by [7], the pumped
pulses contemplated here have durations smaller by 103

and intensities higher by 106.
The slightly detuned transient 3-wave interaction for a

Raman backward amplifier can be described by equations,

at 1 caz � vpfb, bt 2 cbz � 2vpf�a ,

ft 1 idvf � 2vab��2, dv � vp 1 vb 2 va .
(1)

Here a and b are vector potential envelopes of
the pump and pulse, respectively, in units of
mec2�e � 5 3 105 V; f is the envelope of the elec-
trostatic field of the Langmuir wave, normalized to
mecvp�e � c

p
4pmene �

p
ne�cm23� V�cm; vp , vb ,

and va are the plasma, laser-seed and laser-pump fre-
quencies; dv is the detuning from the 3-wave resonance;
subscripts t and z denote time and space derivatives.
The pulse duration is larger than v21

p . Both lasers are
circularly polarized. Self-nonlinearities of lasers and
the Langmuir wave are neglected. Plasma ions are
assumed to be immobile. For vb ¿ vp , one may assume
va � vb � v (except in calculating dv).

It is convenient to count time from the seed-laser front
arrival to a given point 2z and to rescale variables,

z � �t 1 z�c�pvvp�2, t � 2z
p

vvp�c ,

f � f̄
p

v�vp , dv �
p

vvp d�2 ,
(2)

so that Eqs. (1) take the form

az 2 at � f̄b, bt � 2f̄�a, f̄z 1 if̄d � 2ab�.
(3)
A smoothly varying detuning can be linearized near the
resonance t � 0, where d � d0t � qa2

0t.
Note that small varying parts of vp and va could have

been included in the respective envelope definitions, which
would reduce Eqs. (1) to the same form as for zero fre-
quency detuning (but with more complicated boundary
conditions at large 2z or ct 2 z). Such a transformation
differs from that of [12], which removed the wavelength
detuning from equations for the near-resonant 3-wave in-
teraction. Indeed, when the group velocity of one wave is
zero, the transformation [12] is reduced just to a time-in-
dependent phase shift for this wave. Such a shift cannot
remove the frequency detuning from Eqs. (1). Thus, the
frequency detuning is not covered in general by the trans-
formation [12]. Also, the linear theory for parametric in-
stabilities in inhomogeneous medium, suggested in [13], is
not directly applicable to the frequency detuned Eqs. (1).

For the linear stage of the backscattering instability,
when the pump depletion is negligible, a � a0 � const,
the solution of (3) with d � qa2

0t can be written as

b�z , t� �
≠

≠z

Z
dz1 G�z 2 z1, t�b�z1, 0� ,

G�z , t� �
1

2pi

Z
C

dp
p

exp

∑
ph 1

i
q

ln

µ
1 2

iq
p

∂∏
,

(4)

where h � a2
0zt and the integration contour C in the

complex plane p encompasses in the positive direction
singularities at p � 0 and p � iq.

For jqj
p

h ø 1, the Green’s function G reduces to that
in a uniform plasma, where q � 0 and G � I0�2ph �, in
agreement with linear theory for backscattering in uniform
media [10]. Here I0 is the modified Bessel function.
In the domain h ¿ 1 (but still jqj

p
h ø 1, which

is possible when jqj ø 1), one has G � exp�2ph ��
2
p

p
p

h . In original variables, h � a2
0vvp�t 1

z�c� �2z��2c, so that the maximum of G, reached at
z � 2ct�2, moves with the speed 2c�2 and increases
with the peak growth rate for the monochromatic wave
instability a0

p
vvp�2.

The effect of detuning becomes noticeable at jqj
p

h �
1, when the backscattering instability makes about jqj21

exponentiations. For jqj ø 1, the Green’s function (4) can
be evaluated by the method of steepest descent. It increases
exponentially with h up to the point hM � 4�q2 ¿ 1. In
the domain h ¿ 1, but hM 2 h ¿ 1, G can be approxi-
mated by the formula
G �
exp�

p
h�1 2 h�hM� 1 �phM 1 i� arcctg

p
hM�h 2 1 2 ih�phM �

2
q

p
p

h�1 2 h�hM�
. (5)

For h ø hM , Eq. (5) reduces to the exact resonance case. At the applicability limit hM 2 h � 1, jGj attains its
maximum value, maxh jGj � exp�p�jqj�. For larger h, jGj drops abruptly. Hence, the maximum amplification factor
for the integrated amplitude, u �

Rz dz b�z , t�, of a small narrow seed b is � exp�p�jqj�.
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This gives the threshold for stabilizing the pump by the
detuning gradient q in a noisy backward amplifier. If the
initial value of the integrated amplitude u is much smaller
than exp�2p�jqj�, it remains forever smaller than 1. Such
a small seed never reaches the nonlinear stage of instability.
The pump depletion similarly remains small.

Consider now the nonlinear evolution of the desired
signal, a seed pulse with the initial integrated amplitude
u larger than exp�2p�jqj�, which is sufficient to deplete
the pump before making p�jqj exponentiations. In the
nonlinear stage of amplification, the pump depletion
scale decreases, while the amplification time increases,
since a fixed pump acts relatively more slowly on larger
signals. When the z scale becomes much smaller than
the t scale, the term jatj ø jaz j in (3) can be ne-
glected. Then the resulting set of nonlinear equations
has a new symmetry, allowing the self-similar substi-
tution h � a2

0tz , a�z , t� � a0ã�h�, f̄�z , t� � a0f̃�h�,
b�z , t� � a2

0tb̃�h�, with new functions satisfying the
nonlinear ordinary differential equation (ODE)

ãh � f̃b̃, f̃h 1 iqf̃ � 2ãb̃�, �hb̃�h � 2ãf̃�,

(6)

and the initial condition ã ! 1 at h ! 10. The solution
depends on a single parameter, say b̃�10� � e1.

To analyze Eqs. (6) for arbitrary pump depletion, it is
useful to rewrite them in real form introducing real ampli-
tudes and phases by ã � Aeia , b̃ � Beib , f̃ � Feif, to
obtain a set of six real first-order equations,

Ah � FBcs, Fh � 2ABcs, �hB�h � 2AFcs ,

ah � FBs�A, fh � ABs�F 2 q, bh � AFs�Bh ,

cs � cosD, s � sinD, D � b 1 f 2 a . (7)

These six equations can be reduced to a set of just two real
first-order equations. Reduction of order by 2 is due to
the invariance of (7) to the 2-parameter group of constant
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FIG. 2. Normalized pump intensity A2 for different values of integrated seed amplitude e1 � 2 tan�e�2� and detuning gradient q.
The pump depletion increases with the increase of jej and decreases with the increase of jqj.
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phase shifts that do not change D. An extra reduction by
one is due to the integral of (7), A2 1 F2 � C2 � const,
corresponding to the conservation of the joint number of
the pump and Langmuir quanta in the 3-wave decay in-
teraction, which allows one to introduce function U, such
that A � C cos�U�2�, F � C sin�U�2�. To proceed with
the reduction, the identity �h2B2bh�h � �h2B2�hq�2 can
be derived from Eqs. (7). Taking into account the regu-
larity of all fields at h ! 10, it follows that bh � q�2.
Thus, the amplified pulse acquires a linear frequency chirp
exactly half of the external detuning gradient, while the
central pulse frequency drift compensates for half of the
external detuning.

Substitution of the above A, F, and integral bh � q�2
in Eq. (7) gives a closed set of two first-order ODE,

Uh � 22B cosD, 2�hB�h � 2C2 sinU cosD , (8)
qhB � C2 sinU sinD . (9)

The initial value of U is U�10� � 22 arctane1 � e [since
A�10� � 1 and F�10� � 2B�10� � 2e1].

For q � 0, when one can take D � 0, Eqs. (8) are
equivalent to the second order ODE �hUh�h � C2 sinU.
With h � j2�4C2, it reduces to Eq. (6) of [2], Ujj 1

Uj�j � sinU, corresponding to the exactly resonant
interaction.

For q fi 0, the equations can also be put in the form
Uh � 2 sin�2D� sinU�qh, U�10� � e, Dh � 2 sin2D 3

cosU�qh 2 q�2, D�10� � 0. The limit q ! 0 has a pe-
culiarity. For q fi 0, U varies only inside �0, p� interval,
while for q � 0, U � Uo varies inside �0, 2p� interval
and tends to the limit p at j ! ` oscillating around this
value (“p-pulse” solution). The points where Uo � p

are not zeros of B, but are rather close to maximums
of the pulse intensity B2. For a small q fi 0, one can
neglect the variation of B � B� near a point h � h�,
where Uo � p and, integrating there (8) with D from (9),
to get Ũ � p 2 U � jB�j

p
q2h2

��C4 1 4�h 2 h��2.
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The function has a minimum Ũ� � jB�qjh��C2 at h�.
The corresponding sinD � Ũ��Ũ tends to zero as q ! 0
outside a narrow �jh 2 h�j # qh�� vicinity of h�. In the
outer domain, the solution is close to the p pulse up to
the terms ~q2.

The pump intensity has a minimum A2
� � C2Ũ2

� �4 �
B2

�q2h2
��4C2 at h�. The zero-order values of B� and h�

can be taken from the p-pulse solution. For e ø 1, the in-
tegrated amplitude of the leading spike of the p-pulse wave
train is close to the classical 2p-pulse solution of the sine-
Gordon equation, Uo � 4 arctan�eej�4

p
2pj � [2]. The

point Uo � p is located at j� � ln�4
p

2pj��e� �h� �
j2

��4�. Calculating a small deviation from the 2p pulse,
one can show that the pulse intensity is B2

� � 4��j� 1 1�2.
Then, A2

� � q2j4
��16�j� 1 1�2. This simple asymptotic

�q ! 0, e ! 0� formula agrees with numerical results pre-
sented in Fig. 2. For q � 0.25, e � 0.1, both the ana-
lytical and numerical solutions give A2

� � 8%. Even for
q � 0.5, e � 0.1, the agreement is still reasonable: A2

� �
33% analytical versus A2

� � 29% numerical.
The numerical solution of Eqs. (8) confirms the linear

theory prediction that detuning suppresses the pump in-
stability to noise: as seen from Fig. 2, very small seeds
virtually do not deplete the pump. Yet, it is possible to
maintain a high efficiency of the useful amplification pro-
cess that starts from a moderately small initial seed and
can tolerate a large enough detuning gradient q.

After the pumped pulse passes, there is no further de-
pletion. The final pump depletion depends on parameters
e and q and may take any value in the �0, 1� interval. It
corresponds to U�1`� taking any value in the �0, p� inter-
val. Thus, all “less-than-p pulses” can appear in detuned
Raman amplifiers, in contrast to the well-known exactly
resonant case where just p pulses appear [11].

Figure 3 demonstrates that the self-similar solution is an
attractor. It also shows that the final pump depletion (say,
76% for e � 0.1, q � 0.25, or 52% for e � 0.1, q � 0.5)
can be somewhat increased by working near the threshold
of the Langmuir wave breaking. The near-threshold break-
ing occurs near the leading maximum of the pumped pulse
intensity, which prevents the pulse energy from scattering
back to the pump. It suppresses the second and further
spikes in the amplified pulse wave train.

In summary, a self-similar attractor solution is found for
the detuned Raman backscattering of a laser pump into
a short counterpropagating seed laser pulse. The ampli-
fied pulse acquires a frequency shift exactly equal to half
the imposed detuning. A nonlinear filtering effect was
identified. The solution generalizes the classical p-pulse
regime solution for the transient exactly resonant 3-wave
interaction.

This generalized solution of the p-pulse regime should
be applicable to a broad range of phenomena [11].
However, the application discussed here, the selective
suppression of unwanted Raman instabilities through a
combination of detuning and nonlinear filtering, makes
robust the effect of fast compression. This application
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FIG. 3. Coincidence of the solid and dotted lines indicates that
the self-similar solution is the attractor for Eqs. (3) with small
and narrow initial seed pulse (small spike at z � 0, where the
intensity b2
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dashed and dashed-doted lines, based on 1D particles-in-cell
simulation, show that the Langmuir wave breaking (occurring at
a0 � 0.008 for v�vp � 10) raises the total energy extraction
from the pump and suppresses secondary spikes.

itself may make feasible a new generation of compact
ultrahigh energy compressors of short laser pulses.
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