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Ion Larmour Radius Effect on rf Ponderomotive Forces and Induced Poloidal Flow
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A. G. Elfimov, G. Amarante Segundo, R. M. O. Galvão, and I. C. Nascimento
Physics Institute, University of São Paulo, 05315-970, São Paulo, SP, Brazil

(Received 11 June 1999)

Analytical approximations are used to clarify the effect of Larmour radius on rf ponderomotive forces
and on poloidal flows induced by them in tokamak plasmas. The electromagnetic force is expressed as a
sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation.
The first part, called the gradient electromagnetic stress force, is combined with fluid dynamic (Reynolds)
stress force, and gyroviscosity is included into viscosity force to model finite ion Larmour radius effects
in the momentum response to the rf fields in plasmas. The expressions for the relative magnitude of
different forces for kinetic Alfvén waves and fast waves are derived.

PACS numbers: 52.35.Bj, 52.35.Hr, 52.50.Gj
Poloidal flows have been found to play an important
role on the creation of internal transport barriers (ITB)
which improve the energy confinement in fusion plasmas
[1,2]. The improvement is associated with a sudden in-
crease of plasma density and temperature in the central
region of a plasma column, with negligible modification
outside the region. The temperature gradient, for instance,
has a discontinuous variation at the transition between the
two regions, indicating a localized change in the heat diffu-
sion coefficient. The transport barriers appear around the
middle of the plasma minor radius with a sheared plasma
rotation and a negative shear of poloidal magnetic field.
The effect of sheared poloidal flows is very well known
and usually used in the theory of plasma stability [3]. It
may decrease the turbulence level by shearing decorrela-
tion mechanisms [3] and cause ion banana orbit squeezing
by the associated radial electric field shear [4,5], modifying
therefore the heat diffusion coefficient and the outward ra-
dial transport. Several mechanisms have been proposed to
generate sheared plasma rotation, including neutral beam
injection [1,2], Reynolds stress [3,6], and general pondero-
motive forces [7,8] driven by radio-frequency (rf) fields.
The idea to use forces driven by Alfvén waves to reduce
radial transport has a rather long history [3,9]. Actually,
toroidal plasma rotation (and the current drive also) in-
duced by Alfvén waves has already been demonstrated
[10,11], showing the possibility to create ITB.

The poloidal flow driven by rf fields has been calcu-
lated by many authors in various frequency ranges and
with different approximations. The results of calculations
of power required to drive substantial flows seem to be
rather sensitive to the adopted model and, since many ef-
fects act simultaneously, it is not straightforward to pin
down the most relevant mechanisms in numerical simula-
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tions. Recently, Berry, Jaeger, and Batchelor [12] calcu-
lated the poloidal flux induced by fast and ion-Bernstein
waves using incompressible and compressible fluid models
and a kinetic model, all in slab geometry. They found that,
for fast waves, the effect of compressibility is to reduce
the contribution of the Reynolds stress to the flow and that
kinetic effects give larger ponderomotive force than both
fluid models. The authors attribute this somewhat unex-
pected result to the near cancellation of the electromagnetic
and nonlinear pressure forces. Because these results were
obtained in slab geometry and by entirely numerical calcu-
lations, it is important to verify whether they remain valid
in toroidal (or, at least, cylindrical) geometry and to clarify
the role played by kinetic effects on the different forces.

In this Letter we investigate analytically the relative
magnitudes of the different forces that determine the mag-
nitude of the poloidal flow driven by rf waves, for the case
of kinetic Alfvén (KAW), global Alfvén (GAW), and fast
magnetosonic (FMSW) waves which dissipate via Landau
damping and transit time magnetic pumping. The expres-
sions for the forces are derived in cylindrical geometry us-
ing a fluid model. Finite gyroradius effects are taken into
account by including gyroviscosity into the viscous force
and keeping terms up to second order in the Larmour radius
in the kinetic expression for the dielectric tensor. To clar-
ify the influence of kinetic effects on the nonlinear forces,
the electromagnetic force is split in a part that depends ex-
plicitly on gradients of oscillating currents and fields and
a part which is due to wave momentum dissipation. The
former can be properly combined with the fluid dynamic
stress into what is sometimes loosely mentioned as the rf
pressure force.

The ponderomotive forces in each plasma species a

[electrons (e) and ions (i)] are calculated from the col-
lisionless two-fluid momentum equation [14],
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where ma , ea are mass and charge of particles, and
homogeneous kinetic pressure along magnetic surfaces,
=u,z P�a� � 0, is assumed. Any physical variable F (den-
sity n�a�, velocity V �a�, current j�a� � eanaV �a�, electric
E, and magnetic B fields) is written as a sum of quasi-
stationary (represented as F) and oscillating (represented
as F̃) parts. The oscillating part is represented as one
wave harmonic, F̃ ~ exp�i�

Rr
0 kr dr 1 mu 1 nz 2 vt��,

where v is the wave frequency, m, n are the poloidal and
toroidal wave numbers, and the eikonal approximation is
assumed for the radial dependence (jkrFj ¿ j≠F�≠rj
and jkr j ¿ jm�rj, jn�R0j). The cylindrical limit �r�R0 ø
1� of the pseudotoroidal coordinates �r , u, z � with coaxial
magnetic surfaces is used. Following the usual proce-
dure of averaging Eq. (1) over the wave oscillations, we
obtain
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where the first force is produced by the fluid dynamic
stress (which includes the Reynolds stress), the next
�F�a�
EM,u,z

� is produced by the electromagnetic stress, and
the last one is produced by viscosity. Using continuity and
induction equations, the electromagnetic stress force can
be represented as the sum [7,8] of a gradient part, F

�a�
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and a wave momentum transfer force W �a�k�v, which
is proportional to wave dissipation, W �a� � j̃�a� ? Ẽ,
where j̃

�a�
s � 2iv��4p�

P
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sp Ẽp . The poloidal com-
ponent of the viscosity force can be represented as the
sum of the neoclassical ion viscosity force [3,6], Fp

neo,u �
mneoV0u (mneo is the ion viscosity coefficient), and the
collisionless gyroviscosity force [14],
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in which the second-order finite ion Larmour radius
�ri � yTi�vci� effect is taken into account. The poloidal
rotation velocity V0u is found by balancing the sum of
ponderomotive forces on electrons and ions with the
poloidal component of the total ion viscosity force Fp

u .
The relations between the oscillating current and veloc-

ity and the components of the rf electric fields are de-
termined by the dielectric tensor ´�a�

sp (see, for example,
Refs. [8,13]):
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The relative magnitudes of the different forces depend on the polarization relationships of the components of the rf electric
field; solving the Maxwell equations, we have
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where N � kc�v is the refractive index. Note that, to
estimate the value of the poloidal component of the pon-
deromotive forces, we will neglect the difference between
poloidal and binormal components of the oscillating
current and electric field (for example, Ẽb � ẼuBz �
B0 2 Ẽz Bu�B0 � Ẽu) because of Ẽr , Ẽb ¿ Ẽk and
Bu ø B0 (Bu is the poloidal component of the magnetic
field B0).

To analyze the ion Larmour radius effect on the forces
given by Eq. (2) for the different waves, we consider the
approximate dispersion relations,
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FMSW, respectively,µ
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We begin the analysis of the poloidal driving forces
by assuming dissipation only on electrons and defining
the wave momentum transfer force via electron Landau
damping [7,8],
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1201



VOLUME 84, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 7 FEBRUARY 2000
which is valid for the kinetic and global Alfvén waves. For the FMSW, this force can be calculated using the relation
Ek�Eb � 2´32�´33. The other driving forces will be compared with this momentum transfer force.

Combining the gradient electromagnetic stress force with the fluid dynamic stress force �F�a�
≠,u 1 F
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(9)
In the zero Larmour radius limit �re,i ! 0�, this force
and gyroviscosity force F

�i�
GV,u equal zero independently

of the type of waves, and the poloidal rotation is de-
fined only by the momentum transfer force. If only the
Reynolds stress term is taken into account in Eq. (1)
�v2 ¿ v

2
ci�, the force given by Eq. (9) will be an over-

estimate. This seems somewhat in disagreement with the
conclusions in Ref. [12].

Using Eq. (7) and kb ø kr , v2 ø v
2
ci in Eq. (9), we

have, for both the KAW and GAW,
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where the first term is important for KAW and the sec-
ond term is important for GAW. Estimating the relation
Ek�Eb from Eq. (5) as �N2

k 2 ´11���NkNb� and ≠�≠r as
22jImkr j, we get the ratio of the total gradient force to the
1202
wave momentum transfer force for KAW,
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This ratio can be large because the wave dissipation length
jImkr j

21 is the order of few Larmour radii. Note that this
gradient force changes direction at the mode conversion
point [8] (where ´1�rA� � N2

k ) because we have a wave
dissipation maximum at this point.

For the fast waves the dissipation length is larger than
plasma radius Imkr ø 1�a and the parameter of the radial
plasma inhomogeneity lr �≠�≠r � 21�lr� may be impor-
tant. For GAW the small ion Larmour radius effect be-
comes relevant in the gradient force because v2 ø v

2
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Using relations in Eq. (7) and jImkr j ø jkbj , jRekr j,
we find for FMSW,
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This force is large near ion-cyclotron resonance and it is also larger than the momentum transfer force for large phase
velocity, v�kk ¿ yTe, because electron dissipation is exponentially small, 2Imh �

p
p�2 v��kkyTe� exp�2v2�

�kkyTe�2� ø 1. The result is in qualitative agreement with those of Ref. [12].
In the last step, we analyze the gyroviscosity force (3) and compare it with the wave momentum transfer force (8).

Estimating the density fluctuations from the continuity equation, ñi � �kr j̃
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Then, using the approximations for KAW as in Eq. (11),
we estimate this force,
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which is therefore the same order of the momentum trans-
fer force in Eq. (8). Note that the gyroviscosity force
driven by GAW is very small.
Using 2Im�Er�Eb� � v�vci , 1 and jImkr j ø
jkbj , jRekr j for FMSW, we find

�F�i�
GV,u�FMS � 2

Ti

Te

v2v
2
ci

�v2
ci 2 v2�2

k2
b

k3
r lr

F
�i�
MT,u

Imh
, (16)

which is much smaller than the gradient force (13) driven
by the FMSW.
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Finally, we estimate the finite ion Larmor radius effect
on power requirements to drive sufficient flow to create
the internal transport barriers by the kinetic Alfvén waves
in TCABR [the Tokamak Chauffage Alfvén wave experi-
ment in Brazil (for parameters see Ref. [8])]. The KAW
ponderomotive force can drive poloidal flow in TCABR
near the mode conversion surface rA � 0.7a in a narrow
radial layer [8] D � �ac2�v2

pe�1�3�yTe�yA�4�3 � 2 cm,
which accounts for the structure of the Airy function
for KAW at rA. Note that the flow velocity changes
sign at the mode conversion point. Balancing the
poloidal force (11) with the neoclassical viscous force,
we find for the parameters of TCABR (a � 18 cm,
R0 � 61 cm, Bt � 1 T, q0 � 1.01, Ti�e � 400�500 eV,
n0 � 2 3 1013 cm23, and all profiles are assumed
parabolic) the poloidal plasma flow velocity for wave
dissipation of 400 kW, Uu,max � 6 km�s, and radial
electric field, B0Uu�c � 60 V�cm, can also be estimated.
This strongly sheared profile of the poloidal velocity is
similar to the one in the conditions of the internal transport
barriers in the Test Fusion Tokamak Reactor experiment
[2]. In this case, a sheared flow 2Uu,max�D will be enough
to overcome the turbulence threshold [3], Dvk0��Dxk0k0

u�,
where Dvk0 is the order of drift frequency �100 kHz and
the decorrelation length Dxk0 is the order of the inverted
turbulence wave number k021

u . Note that without the
Larmor radius effect the sheared flow (less by one-third)
is not enough to overcome the turbulence threshold.

In conclusion, we can say the following: A general form
of time-averaged poloidal ponderomotive forces induced
by fast and kinetic Alfvén waves in geometric optics ap-
proximation is analyzed on the basis of the collisionless
two fluid (ions and electrons) magnetohydrodynamics
equation and it is shown that accounting only the Reynolds
stress term in Eq. (1) can overestimate the plasma flow.
It is found that the finite ion Larmor radius effect plays
a fundamental role in ponderomotive forces because of
a radial plasma inhomogeneity that can drive a poloidal
flow, which is larger than a flow driven by a wave mo-
mentum transfer force. This effect can be used to drive
the poloidal flow in tokamaks by the kinetic Alfvén waves
with low phase velocity and by fast waves with phase
velocity larger than thermal velocity.
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