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Helicity Redistribution during Relaxation of Astrophysical Plasmas
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We present the first 3D numerical MHD simulations that show that Taylor’s relaxation conjecture is
not satisfied in some MHD evolution of magnetic configurations encountered in solar physics. We show
that magnetic helicity can be slowly injected through the boundary into a magnetic configuration which
then evolves into a MHD disruption, with the formation in finite time of a current sheet through which
reconnection occurs, leading to a release of magnetic energy. While helicity is well conserved during
the process, it is shown that the relaxed state is far from the constant-a linear force-free field that would
be predicted by Taylor’s conjecture.

PACS numbers: 52.30.Jb, 52.65.Kj, 95.30.Qd
In various situations of laboratory and space plasmas
the magnetic Reynolds number is very large. Magnetic
helicity can be considered as a conserved quantity [1]. It
was conjectured in [2] that after a major disruption phase
the system should relax towards a constant-a force-free
field, with a predicted current profile. This conjecture
turned out to be quite impressively satisfied in the case
of this reversed field pinch ZETA machine [3].

The situation was found to be different in the tokamaks,
for which the prediction of the theory did not match the
measured current profiles [4]. Although there are major
differences between the laboratory and solar cases, the
latter deals in general with either bounded or unbounded
domains for which the magnetic field threads the boundary
(i.e., the boundary is not a flux surface); the conjecture
has been extensively used in many situations dealing with
astrophysical plasma systems and, in particular, in solar
coronal physics such as solar flare and coronal heating
theory [5].

For such astrophysical configurations whose footpoints
are rigidly anchored in the boundary �Bnj≠V fi 0�, one
needs to define a new helicity that is gauge invariant
[6]. There is no unique definition, and one can take
dH �

R
V �A 2 A0� ? �B 1 B0�d3r 1

R
≠V k�B 1 B0� ?

ds [6,7], where A is a potential vector associated with
B, B0 is the unique magnetic field corresponding to the
same boundary value Bnj≠V , and A0 is an associated
potential vector. k may be explicitly given in terms of B
and B0. This second integral vanishes when the domain
is the upper half space. A variational problem can also
be defined in which one minimizes the magnetic energy
for a fixed value for this relative helicity, and the Woltjer
theorem [1] can be generalized. When the minimizer cor-
responds to the solution of the Euler-Lagrange equation,
it is the so-called constant-a force-free (or Beltrami) field
solution of = 3 B � aB in V with a some a priori
unknown constant appearing as the Lagrange multiplier
[8]. General existence and uniqueness theorems as well as
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particular classes of solutions for this equation in bounded
and unbounded domains and various geometries have been
extensively investigated (Ref. [9], and references therein).
It is not clear whether the Taylor state is the actual
relaxed state for such configurations whose footpoints are
anchored in the boundary.

In this Letter we address the following issue (relevant to
the physics of the solar corona and therefore of astrophysi-
cal interest). One assumes an almost infinitely conducting
low beta plasma and a situation different from the labora-
tory �Bnj≠V fi 0� in a bounded (or unbounded) domain,
and a magnetic configuration similar to arcadelike flux
tubes threading the “solar surface.” If helicity is injected
through the boundary and then a major disruption occurs
while magnetic helicity conservation is fulfilled to a rela-
tively good extent, what will be the nature of the relaxed
state? According to Taylor’s conjecture, if it would ap-
ply, this final state should be a constant-a linear force-free
field.

Addressing this issue is difficult because of the need to
perform three-dimensional MHD simulations in which a
magnetic configuration embedded in a highly conductive
low-b plasma would slowly be driven up to an instability
phase and then to a relaxation phase. The formation of a
singularity in finite time, initiating reconnection, is also an
important related issue [10].

This Letter presents the first 3D numerical MHD simu-
lations which lead a magnetic configuration to develop
near singularities (current sheets) and initiate reconnec-
tion and relaxation to an equilibrium state. For previ-
ous initial conditions new simulations are performed [11].
Here it is shown that the magnetic helicity of the system
increases linearly during the slow evolution phase driven
by boundary motions, and that helicity is well conserved
during the relaxation phase associated with reconnection
when the boundary motions are switched off. We show that
the relaxed state is far from the constant-a linear force-free
state that would be predicted by Taylor’s conjecture and,
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in particular, that magnetic helicity is redistributed in the
current sheets during the relaxation process.

Our code is based on a three-dimensional numerical
scheme whose time advance is semi-implicit or implicit,
allowing the use of large time steps and is nonperiodic in
the three dimensions of the Cartesian space. This code is
an extension of the axis-symmetric version developed re-
cently [12]. The scheme uses an unstaggered mesh that al-
lows zero divergence of the magnetic field up to round-off
accuracy. We solve the full set of magnetohydrodynamic
equations for the velocity v , magnetic field B, density r,
and pressure p. We use small values for the dissipation
coefficients: n � 1022 1023 for the kinematic viscosity
and h � 1025 for the plasma resistivity. Since we are
dealing with astrophysical situations such as in the solar
corona, b (the ratio of the magnetic to the gas pressure)
is small (of the order of 1023 or even smaller); typical
simulations were done with these values or with b � 0,
and did not show differences. The computational domain
is the finite box �0 , x , Lx , 0 , y , Ly , 0 , z , Lz�,
whose size is large compared to the characteristic spatial
scale of the system (which is our reference length). We
choose Lx � Ly � Lz � 40 60. The MHD equations
are then discretized on a nonuniform mesh (111 3 101 3

70 nodes). Note that there exists a residual numerical dissi-
pation which is �h � 1026 1025� smaller or of the order
of the value taken for the actual resistivity �h � 1025�,
but never higher.

As an initial condition at t � 0 we take B to be the bipo-
lar potential field (i.e., current free) such that Bz� y, 0� is
represented by two elliptic 2D Gaussian functions. This
configuration represents an arcade above the half plane
such that the normal component Bnj≠V fi 0, unlike for
typical magnetic fusion configurations such as in the toka-
mak as shown in Fig. 1a.

For t $ 0, one injects helicity through the boundary
by imposing a 2D velocity field vb at the bottom of the
box (and no velocity field on the other boundaries). This
boundary velocity field is chosen to correspond to two
parallel vortices rotating in the same direction and located
on each side of the line where Bz� y, 0� � 0. max jvbj �
1022 (i.e., small compared to the Alfvén speed yA � 1
in our units). We chose the support of the vortices to be
small enough so that these are imposed on a small fraction
of the feet of magnetic configuration that defines the flux
rope shown in Fig. 1a. The evolution is therefore that
of a confined magnetic flux rope that will be twisted by
this boundary velocity field while the overlaying confining
arcade will remain untwisted.

During a first phase which lasts up to about t �
155 170 the configuration evolves through a sequence
of force-free equilibria (quasistatic evolution at a speed
slower than the driving boundary velocity). The magnetic
configuration builds up a considerable amount of self-
helicity [corresponding to a twist of about �2.3 2.7�p]
and magnetic energy in the inner twisted flux tube, while
the overlaying confining arcade remains almost current
FIG. 1. MHD evolution of the magnetic structure correspond-
ing to helicity injection by twisting motions during a first quasi-
static phase [(a),(b)], followed by a dynamic phase when the
boundary motions are switched off [(c)–(e)]. The simulation
time (in units of Alfvén time) is indicated at the bottom of each
frame.
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free. By switching off the boundary vortex motions sev-
eral times during this first phase and performing a viscous
relaxation, the configuration reaches a state of numerical
equilibria.

During a second phase starting after �t � 170� the sys-
tem evolves through a dynamic phase during which the
configuration experiences a major disruption, as shown in
Figs. 1c–1e. Switching off vb we found no neighboring
accessible equilibria via viscous relaxation, unlike in the
first phase. In a few tens of Alfvén times, the field lines
of the flux tube reconnect with those of the overlaying
structure.

Reconnection actually occurs through an evolving cur-
rent sheet located on the interface between the twisted flux
tube and the overlaying structure. This current sheet [13]
is the generalization to 3D of the one obtained in cylindri-
cal geometry due to the kink instability [14]. This current
sheet coincides with where the magnitude of the velocity
is higher during the reconnection phase (slightly smaller
or of the order of the Alfvén speed). Despite the limited
resolution of the simulation, this result shows an increase
of peak current consistent with the development of a sin-
gularity in finite time in MHD equations [10]. Figure 2
shows the evolution in time of supjaj in a subdomain con-
taining the evolving current sheet, where a � J?B

jBj2 with J
representing the electric current. It is worth noticing that
supjaj is still increasing during the reconnection phase.
This is explained by the fact that the driving process is
an ideal instability (that has not yet saturated to a singular
equilibrium) and therefore, as with the ideal kink insta-
bility in toroidal geometry, it is still building up electric
currents even in the presence of resistivity.

FIG. 2. Time evolution of the quantity jajmax showing that the
system first evolves towards the formation of a current singular-
ity up to the limit of our finite spatial resolution.
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At the end of the relaxation phase (Fig. 1e) the configu-
ration reached an equilibrium state in which the initially
single twisted flux tube split into two almost untwisted
flux tubes. This result is again a generalization to 3D of
the results of [14].

Magnetic energy is injected as mechanical energy on the
boundary and stored during the first phase of helicity in-
jection, as shown on Fig. 3 (in units of the initial potential
magnetic field energy). Then during the second disruption
phase a non-negligible part of the free magnetic energy is
released.

A property of our numerical code (due to the mesh
staggering) is that the relative magnetic helicity defined
above is conserved up to round-off accuracy. Figure 3
shows the evolution of the relative magnetic helicity. Dur-
ing the first phase of helicity injection, magnetic helicity
increases linearly as would be expected from any injection
from a stationary velocity field: dH�dt � 2

R
≠V �A0 ?

B� �v ? n� 2 �v ? A0� �B ? n� ds 2 2
R

V �J ? B��s d3r,
where s is the conductivity of the medium and n is the
normal unit vector directed onwards from the domain.
The only source of injection of helicity is tangential fluid
boundary motions, and, since electric conductivity is
high enough, the first term becomes the only remaining
one. Therefore Taylor’s conjecture could, in principle,
be applied and would predict a constant-a linear force-
free field.

However, it is straightforward to check that the relaxed
final state is still far from a linear force-free state, as shown

FIG. 3. Compared evolution of relative magnetic energy
W�W0 of the field (in units of the potential field energy) and
relative magnetic helicity dH. Magnetic helicity is injected
linearly in the driving phase and stored as self-helicity and then
conserved during the relaxation phase while a non-negligible
amount of magnetic energy is released during the relaxation
phase.
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FIG. 4. Distribution of a in the relaxed state, showing that the
system does not relax towards a constant-a force-free field as
predicted by Taylor’s conjecture.

in Fig. 4, since nonlinearities remain in the configuration.
Magnetic helicity which was stored in the form of self-
helicity has been redistributed: it has been ejected from the
twisted flux tube (which is now broken into two untwisted
flux tubes), towards the singularities (current sheets), and
a almost vanishes at the location where the twist built up.

These results seem to put a limit on the conditions of ap-
plicability of Taylor’s conjecture. In the absence of fully
developed turbulence and in the presence of a current sin-
gularity, we conjecture that after a single coherent disrup-
tive event the system should relax towards a state in which
helicity would be redistributed towards the boundary of
the domain, so that the relaxed state is not a constant-a
force-free field.

From these results it seems that other constraints should
be found and imposed to determine a variational problem
that prevents the system from relaxing towards a constant-
a force-free state. New directions should be investigated:
(i) imposing part of magnetic helicity (corresponding to the
flux tubes involved in the process) and not total magnetic
helicity, (ii) defining a generalized action associated with
the variational problem that incorporates the new boundary
anchoring constraint that may prevent large scale homoge-
nization up to the constant-a Taylor relaxed state, and/or
(iii) looking for new higher order invariants of MHD equa-
tions that have the same properties of magnetic helicity,
mainly to inverse cascade towards large scales.

We would like to thank B. C. Low for stimulating dis-
cussions and R. M. Kerr for fruitful comments. We wish
also to thank NATO for its financial support. The numeri-
cal simulations performed in this paper have been done
on the CRAY supercomputers at the Commissariat à l’En-
ergie Atomique and the Institute I.D.R.I.S. of the Centre
National de laRecherche Scientifique.

*Also at CNRS, L.P.S.H. Observatoire de Paris, F-92195
Meudon Principal Cedex, France.

[1] L. Woltjer, Proc. Natl. Acad. Sci. 44, 489 (1958).
[2] J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974); J. B. Taylor,

Rev. Mod. Phys. 58, 741 (1986).
[3] M. G. Rusbridge, Plasma Phys. 11, 35 (1969); J. B.

Taylor, Plasma Phys. Controlled Nucl. Fusion Res. 1,
161 (1975); B. Kadomtsev, Phenoméne collectifs dans les
plasmas (Editions Mir, Moscou, 1976).

[4] A. Bhattacharjee, R. L. Dewar, and D. A. Monticello, Phys.
Rev. Lett. 45, 347 (1980).

[5] C. Norman and J. Heyvearts, Astron. Astrophys. 124, L1
(1983); K. Kusano, Y. Suzuki, and K. Nishikawa, Astro-
phys. J. 441, 942 (1995); J. Heyvearts and E. R. Priest, As-
tron. Astrophys. 137, 63 (1984); A. Dixon, M. A. Berger,
P. Browning, and E. R. Priest, Astron. Astrophys. 225, 156
(1989).

[6] M. A. Berger and G. B. Field, J. Fluid Mech. 35, 147
(1984).

[7] J. M. Fin and T. M. Antonsen, Comments Plasma Phys.
Control. Fusion 26, 111 (1985).

[8] M. A. Berger, Astrophys. J. Suppl. Ser. 59, 433 (1985);
P. Laurence and M. Alvellaneda, J. Math. Phys. 32, 1240
(1991).

[9] T. Z. Boulmezaoud, Y. Maday, and T. Amari, Math. Model.
Numer. Anal. (to be published).

[10] R. M. Kerr and A. Brandenburg, Phys. Rev. Lett. 83, 1155
(1999); R. E. Caflisch, I. Klapper, and G. Steel, Commun.
Math. Phys. 184, 443 (1997).

[11] T. Amari and J. F. Luciani, Astrophys. J. 515, L81 (1999).
[12] T. Amari, J. F. Luciani, and P. Joly, SIAM Sci. Comput. (to

be published).
[13] T. Amari, in Advances in Solar System Magnetohydrody-

namics, edited by E. R. Priest and A. W. Hood (Cambridge
University Press, Cambridge, England, 1991), p. 173.

[14] H. Amo, T. Sato, A. Kageyama, and the Complexity
Simulation Group, Phys. Rev. E. 51, R3838 (1995);
S. Badzenkov and T. Sato, Astrophys. J. 500, 966 (1998);
R. Lionello, M. Velli, G. Einaudi, and Z. Mikic, Astro-
phys. J. 494, 840 (1998).
1199


